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4 The p-typical de Rham–Witt complex
Most of what we say here is taken from Illusie’s paper [1]. If X is a smooth Fp-scheme, one could

naively try to take the de RHam complex of W (X), and compute the hypercohomology. But it turns out
that this doesn’t work — it is not even compatible with taking the limit limWn(OX) = W (OX) (it is
not functorial in X). On the other hand the limit of the de Rham complexes of Wn(X) is not compatible
with Frobenius and Verschiebung. Thus Deligne’s idea was to extend the projective system W• (OX) to a
projective system of dga’s W•ΩX) and also extend the operators F and V satisfying suitable equalities.

4.1 Definition for Fp-algebras
Following the intuition from the de Rham complex, we will define the de Rham-WItt complex as initial

object in a certain category.

Definition 4.1. Let X be a topos. A de Rham-V -procomplex is a projective system

M• = ((Mn)n∈Z, R : Mn+1 →Mn)

of Z-dga’s on X and a family of additive maps

(V : M i
n →M i

n+1)n∈Z

such that RV = V R satisfying the following conditions:
(V1) Mn60 = 0, M0

1 is an Fp-algebra and M0
n = Wn(M0

1 ) where R and V are the usual maps.
(V2) For x ∈M i

n and y ∈M j
n

V (xdy) = (V x)dV y.

(V3) For x ∈M0
1 and y ∈M0

n

(V y)d[x] = V ([x]p−1y)dV [x].

A morphism of de Rham-V -procomplexes is a morphism of a projective system of dga’s (fn : Mn →
M ′n)n compatible with all the additional structure in the obvious way (fn+1V = V fn and f0

n = Wn(f0
1 )).

Thus the de Rham-V -procomplexes form in a natural way a category denoted by VDR(X). there is a
forgetful functor

VDR(X)→ Fp Alg(X) , M• 7→M0
1 (4.1)

We can now explain the construction of the de Rham–Witt complex.

Theorem 4.2. The forgetful functor (4.1) has a left adjoint A 7→W•ΩA: there is a functorial isomorphism

HomVDR(X)(W•ΩA,M• ) ∼= HomFp Alg(X)(A,M
0
1 ).

For n ∈ N the morphism of Z-dga’s πn : ΩWn(A) → WnΩA such that π0
n = id is surjective and π : ΩA →

W1ΩA is an isomorphism.

Proof. The construction is inductive in n. Let WnΩA = 0 for n 6 0. Then set W1ΩA = ΩA. Assume
that for fixed n > 0 the system (R : WiΩA → Wi−1ΩA)i6n and the maps (V : Wi−1ΩA → WiΩA)i6n are
constructed, such that the following conditions are satisfied
(0)n RV x = V Rx for x ∈WiΩA, i 6 n− 1.
(1)n WiΩ

0
A = Wi(A) for i 6 n and there V and R are as usual.

(2)n V (xdy) = (V x)dV y for x, y ∈WiΩA, i 6 n− 1.
(3)n (V y)d[x] = V ([x]p−1y)dV [x] for x ∈ A , y ∈Wi(A), i 6 n− 1.
(4)n πΩWi(A) →WiΩA is an epimorphism for i 6 n.
Now we construct Wn+1ΩA together with R and V satisfying (0)n+1, . . . , (4)n+1.

Let v : Wn(A)⊗i+1 → ΩWn+1(A) given by

(a⊗ x1 ⊗ · · · ⊗ xi) 7→ V adV x1 . . . dV xi
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and ε : Wn(A)⊗i+1 → ΩiWn(A) by

(a⊗ x1 ⊗ · · · ⊗ xi) 7→ adx1 . . . dxi

Let Ki be the kernel of the composition

Wn(A)⊗i+1 ε−→ ΩiWn(A)
πn−−→

then ⊕iv(Ki) is a graded ideal of ΩWn(A) (but not stable by d in general). Furthermore, let I be the
Wn+1(A)-submodule of Ω1

Wn+1(A) generated by sections of the form V y.d[x]−V ([x]p−1y)dV [x]. Let N be
the dgi of ΩWn+1(A) generated by I and ⊕iv(Ki). Then we define

Wn+1ΩA := ΩWn+1(A)/N

and πn+1 is then just the projection ΩWn+1(A) → Wn+1ΩA. The restriction R : Wn+1(A) → Wn(A)
induces a morphism of dga’s

R : ΩWn+1(A) → ΩWn(A)

and because πnR(N) = 0 it induces a morphism on the quotients

RWn+1ΩA →WnΩA.

Moreover, since by construction πn+1v(Ki) = 0, V induces an additive map

V : WnΩA →Wn+1ΩA

satisfying the desired properties. The remaining properties (0)n+1, . . . , (4)n+1 are easily verified.
It remains to show that the constructed complex satisfies the desired universal property.
Let M• be a de Rham-V -procomplex and f0

1 : A → M0
1 a homomorphism. Then there is a unique

f1 : ΩA →M1 of dga’s extending f0
1 . Inductively, we construct f• .

Assume for n > 1 the morphisms of dga’s fi : WiΩA →Mi for i 6 n constructed (uniquely because πi
is surjective) such that fi−1R = Rfi, V fi−1 = fiV and f0

i = Wi(f
0
1 ).

Let gn+1 : ΩWn+1(A) → Mn+1 the unique morphism of dga’s that extends Wn+1(f0
1 ) = f0

n+1. Then
gn+1(N) = 0 and the induced map on the quotient fn+1 : Wn+1ΩA → Mn+1 satisfies fnR = Rfn+1 and
V fn = fn+1V . The resulting family f• extends f0

1 uniquely to a morphism of VDR(X).

Definition 4.3. Let A be an Fp-algebra of X. The de Rham-V -procomplex W•ΩA is called the de
Rham–Witt pro complex of A.

4.2 Some properties
Proposition 4.4. Let A be as above.

xV y = V (FRx.y) for x ∈Wn(A), y ∈Wn−1ΩiA

(d[x])V y = V (([x]p−1d[x])y) for x ∈ A, y ∈Wn−1ΩiA

Proof. This follows because of the surjectivity directly from (V3) and (V2).

Proposition 4.5. Let A be a perfect Fp-algebra. Then W•ΩiA = 0 for i > 0.

Proof. Because of the subjectivity of π it suffices to show this for ΩiWn(A) for i > 0 and every n. In fact
for a Wn(A)-module M any derivation d : Wn(A)→M is zero: Let x = (x0, . . . xn−1) ∈Wn(A). This can
be written as the sum x = [x0] + V [x1] + . . .+ V n−1[xn−1], and thus

Fn x = [x0]p
n

+ p[x1]p
n−1

+ . . .+ pn−1[xn−1]p

and dFn x is divisible by pn, and therefore zero. But by hypothesis F is an automorphism (of A), and it
follows that d is already zero.
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By construction W•Ω(A) is functorial in A, and any morphism of Fp-algebras on X u : A→ B induces
a morphism in VDR(X)

W•Ωu : W•ΩA →W•ΩB

In particular if k is perfect of characteristic p and A a k-algebra, then WnΩA is naturally a Wn(k)-dga
(i.e. d is Wn(k)-linear), and V is σ−1W• (k)-linear.

Let k → k′ be a morphism of perfect rings of characteristic p and A a k-algebra and A′ = A⊗ k′, then
there is a morphism

W•ΩA ⊗W• (k′)→W•ΩA′ .

Proposition 4.6. This morphism is an isomorphism.

Proof. Show this first for the Witt vectors. For this we need that the square

A′
F // A′

A

OO

F // A

OO

is cocartesian, which it is, because k′ is perfect. Because we have isomorphisms of dga’s

⊕n∈N0
Fn∗ A

∼−→ grV W (A)

and similar for A′, it follows that for each n ∈ N

Wn(A)⊗Wn(k) Wn(k′) ∼= Wn(A′)

.
Then show that the left hand side is a de Rham-V -procomplex (for this we have to define a Ver-

schiebung:
V : WnΩiA ⊗Wn(k′)→Wn+1ΩiA ⊗Wn+1(k′) , V (x⊗ FRy) = V x⊗ y

which is the usual V in degree 0). and use universality to extend the identity on A′ uniquely to a morphism

W•ΩA′ →W•ΩA ⊗W• (k′)

which is the inverse of the canonical morphism above.

The functor Wn(−) commutes with inductive filtering limits of Fp-algebras on X. It follows that the
category VDR(X) has filtering inductive limits and if (Ai)i a filtering inductive system with A = lim−→Ai,
the canonical map

lim−→W•ΩAi →W•ΩA

is an isomorphism.
In particular, if U is an object of X, the Γ(U,W•ΩA) is a de Rham-V -procompelx and

W•ΩΓ(U,A) → Γ(U,W•ΩA)

extends the identity in degree zero. This defines a morphism of presheaves which induces an isomorphism
on the associated sheaves.

Similar to a statement above, but important in the light of sheaf theory:

Proposition 4.7. Let A→ B a localisation morphism of Fp-algebras on X (identify B with S−1A). Then
the W• (B)-linear map

W• (B)⊗W•ΩiA →W•ΩiB

is an isomorphism
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Proof. The idea is similar to above: to show it in degree 0, we need again that the square

B
F // B

A

OO

F // A

OO

is cocartesian (which it is, because we are dealing with a localisation morphism, and (Sp)−1A = S−1A =
B). Then show that the left hand side is a de Rham-V -procomplex in order to use universality to get an
inverse to the morphism in question.

Now let (X,OX) be a ringed tops of Fp-algebras. Then the de Rham–Witt procomplex of OX is
denoted by

W•ΩX .

If f : X → Y is a morphism of ringed topoi of Fp-algebras, then f∗W•ΩX and f−1W•ΩY are naturally
de Rham-V -procomplexes, and there are adjoint maps

W•ΩY → f∗W•ΩX

f−1W•ΩY → W•ΩX

If OX = f−1 OY , the second one is an isomorphism. And in particular, for a point x ∈ X

(W•ΩX)x →W•ΩX,x

Proposition 4.8. For each n ∈ N WnΩiX is a quasi-coherent sheaf of Wn(X). For each open affine,
U = SpecA, we have Γ(U,WnΩiX) = WnΩiA.

Proof. Use the classical methods from basic algebraic geometry.

Proposition 4.9. Let f : X → Y be an étale morphism of Fp-schemes. Then for each n, the Wn(OX)-
linear map

f∗WnΩiY →WnΩiX

is an isomorphism.

Proof. It is enough to show this for affine schemes. In this case we have f : A→ B and have to show that

Wn(B)⊗WnΩiA →WnΩiB

is an isomorphism. For the Witt vectors, we identify again grV Wn(A) with ⊕m<nFm∗ A and similar for
B, and we have an isomorphism B ⊗ grV Wn(A) ∼= grV WN (B). Moreover, Wn(f) is étale and

Wn(B)
F // Wn(B)

Wn(A)
F //

OO

Wn(A)

OO

is cocartesian.
Because Wn(B) is étale over Wn(A), the derivation of WnΩA extends uniquely to a derivation on

Wn(B)⊗WnΩA by
d(b⊗ x) = (db)x+ b⊗ dx

where db is the image of the composition

Wn(B)
d−→ Ω1

Wn(B) = Wn(B)⊗ Ω1
Wn(A) →Wn(B)⊗WnΩ1

A.

Thus we obtain a projective system of dga’s W• (B)⊗W•ΩA.
To obtain the Verschiebung operator, because the above diagram is cocartesian there is a unique

morphism
V : Wn(B)⊗WnΩiA →Wn+1(B)⊗Wn+1ΩiA

such that V (FRx⊗ y) = x⊗ V y.
This defines a de Rham-V -procomplex and we use universality to get a mao inverse to the original

one.
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Definition 4.10. Let X be a ringed topos of Fp-algebras. The complex

WΩX := lim←−WnΩX

is called the de Rham–Witt complex ofX. It is a differential graded algebra, with zero componentW (OX).

The maps V deine by passing to the limit an additive map V on WΩX , which satisfies

xV y = V (Fx.y) for x ∈W (OX), y ∈WΩiX

(d[x])V y = V (([x]p−1d[x])y) for x ∈ OX , y ∈WΩiX

V (xdy) = V x.dV y for x ∈WΩiX , y ∈WΩjX

4.3 An important example
In order to compare the hyper cohomology of the de Rham–Witt complex with crystalline cohomology,

we look first at a basic example. We want to compute the de Rham–Witt complex of X = (Gra×Gsm)Fp .
Thus let A = Fp[(Ti)16i6n, (T

−1
i )i∈P ] where, n = s+ r and P ⊂ {1, . . . n}, #P = s. (We will in particular

need the cases when s = 0, i.e. Gna , and s = n, i.e. Gnm).
We introduce now the rings

B = Zp[(Ti)16i6n, (T
−1
i )i∈P ]

C =
⋃
r>0

Qp[(T
p−r

i )16i6n, (T
−p−r
i )i∈P ]

We have
d(T p

−r

i ) = p−rT p
−r

i

dTi
Ti

which shows that every form ω ∈ ΩmC/Qp can be written uniquely as

ω =
∑

i1<...<im

ai1...im(T )d log Ti1 . . . d log Tim

with ai1...im(T ) ∈ C polynomials over Qp in T p
−r

i and T−p
−r

i for r > 0, divisible by
∏
ij /∈P T

p−s

ij
for some

s ∈ N0.

Definition 4.11. We say ω is integral if its coefficients are polynomials over Zp.

Now we set
EmA =

{
ω ∈ ΩmC/Qp

∣∣ ω and dω are integral
}

which gives a subcomplex E•A ⊂ ΩC/Qp (the biggest subcomplex consisting of integral forms). In particular,
it is a sub-dga containing ΩB/Zp .

Example 4.12. T
1
p

1 does not belong to E0 but pT
1
p

1 does.

We define two operators F and V on C: an automorphism

F (T p−ri ) = T p
−r+1

and an endomorphism
V = pF−1

They extend to ΩC/Qp (by acting on the coordinates: F
∑
ai1...im(T )d log Ti1 . . . d log Tim =

∑
Fai1...im(T )d log Ti1 . . . d log Tim

and V
∑
ai1...im(T )d log Ti1 . . . d log Tim =

∑
V ai1...im(T )d log Ti1 . . . d log Tim), and one verifies

dF = pFd , V d = pdV

so that in particular, E• is stable by F and V . Furthermore, one has for x, y ∈ ΩC/Qp

xV y = V (Fx.y)

V (xdy) = (V x)(dV y)
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The idea now is to set Emn = Em/(V nEm + dV nEm−1) and to get a complex

· → E•n+1 → E•n → E•n−1 → · · ·

The identification E0/V nE0 ∼= Wn(A) then induces a structure of V -procomplex E•• , and we will see that
the induced morphism

W•ΩA → E••

is in fact an isomorphism.
We will start with the following proposition.

Proposition 4.13. Keep all the notation from before.
1. E0 is the set of elements x =

∑
akT

k ∈ C (using multi indices) such that ak ∈ Zp and the
denominators of all ki divide ak.

2. We have the identities

E0 =
∑
n∈N0

V nB

⋂
n∈N0

V nE0 = 0

B ∩ V nE0 = pnB

3. The homomorphism of Zp-algebras B →W (A) sending Ti 7→ [Ti] to its Teichmüller representative,
extends in a unique way to a morphism of Zp-algebras

τ : E0 →W (A)

such that τV = V τ , It is injective and induces for each r ∈ N an isomorphism

E0/V rE0 ∼−→W (A)/V rW (A).

Proof. The first claim follows by definition: x has to be integral, so ak ∈ Zp. For dx =
∑
kakT

kd log T

to be integral, the kak ∈ Zp. Note that ki is of the form k′i
pri with ki ∈ Z and ri ∈ N0, and (k′i, p

ri) = 1.
Thus the denominator has to divide ak.

For the second claim, first identity: it is clear that
∑
V nB ⊂ E0. On the other hand, let x = aT k ∈ E0,

and ps the biggest denominator of the ki. Then we have just seen, that ps|a and thus we can write
aT k = V sp−saT p

sk with p−saT p
sk ∈ B.

Second and third identity : x =
∑
akT

k ∈ V nE0 means pn|ak for all k. Taking the limit over n
induces x = 0. Also, then B ∩ V nE0 = pnB is clear.

For the third claim: Existence of the morphism τ . Set

A =
⋃
r>0

Fp[(T p
−r

i )16i6n, (T
−p−r
i )i∈P ]

B =
⋃
r>0

Zp[(T p
−r

i )16i6n, (T
−p−r
i )i∈P ]

We have E0 ⊂ B and F on B given by T p
−r

i 7→ T p
−r+1

i is an automorphism. Since A is perfect, The Witt
vector Frobenius on W (A) is also an automorphism. The morphism of Zp-algebras

B →W (A) , T p
−r

i 7→ [T p
−r

i ]

is compatible with F and therefore with V = pF−1. Thus the restriction to E0 =
∑
n∈N0

V nB induces
the desired morphism τ (as it has image in W (A)). It is unique because of the identity E0 =

∑
n∈N0

V nB.
Now to prove the isomorphism of the quotients mod V r, note that V r induces an A-linear homomorph-

ism F r∗A→ V rE0/V r+1E0 and an A-linear iso F r∗A
∼−→ V rW (A)/V r+1W (A) and we get a commutative

diagram
F r∗A

((xx
V rE0/V r+1E0 grV // V rW (A)/V r+1W (A).
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To show that E0/V rE0 → W (A)/V rW (A) is an isomorphism, it is enough to show that the horizontal
morphism in this diagram grV is an isomorphism, hence that F r∗A→ V rE0/V r+1E0 is an isomorphism.
Since V is injective on E0, it is enough to consider r = 0, i.e. we have to see that the inclusion B ⊂ E0

induces an isomorphism A = B/pB
∼−→ E0/V E0, which follows form the first and third equality of the

second claim: E0 =
∑
n∈N0

V nB and B ∩ V nE0 = pnB. Passing to the limit, we obtain an isomorphism

lim←−E
0/V rE0 ∼−→W (A)

and composing with the canonical application E0 → lim←−E
0/V rE0 gives exactly τ . And because of

the second equality from above,
⋂
n∈N0

V nE0 = 0, E0 → lim←−E
0/V rE0 is injective, and therefore τ is

injective.

Now we consider the filtration
Filr Ei = V rEi + dV rEi−1

For each r, the Filr Ei, i > 1 form a dgi of Filr E and we have

Fil0E = E ⊃ Fil1E ⊃ · · · ⊃ Filr E ⊃ · · ·

which gives a projective system of dga’s
Er = E/Filr E

By definition we have V (Filr E) ⊂ Filr+1E and F Filr+1E ⊂ Filr E, so that V induces an additive
morphism, ad F a morphism of dga’s

V : Er → Er+1 and F : Er+1 → Er

satisfying the “usual” formulae
dF = pFd, V d = pdV

xV y = V (Fx.y) for x ∈ Er+1, y ∈ Er
V (xdy) = V x.dV y for x, y ∈ Er

(4.2)

Theorem 4.14. The projective system E• with the operator V and the identification E0
r
∼= Wr(A) for

r > 1 is a de Rham-V -procomplex. Moreover, the map

W•ΩA → E•

extending the identity of A is an isomorphism

In order to prove this, we have to study the structure of E. We will use the notion of basic Witt
differentials, which was picked up by Langer and Zink later in their relative construction.

The ring C introduced above has a natural grading, of type

G =

{
k ∈ Z[

1

p
]n
∣∣ ki > 0 for i /∈ P

}
meaning, that the degree of an element is given by the multi-exponents of the variables, which are integers
possibly divided by p, negative for i ∈ P , and positive for i /∈ P We can extend this grading to ΩC/Qp by
saying that a form has degree k ∈ G if its coordinates are of this degree. Then E ⊂ ΩC/Qp is a graded
sub-complex. Denote the homogeneous component of degree k by kΩC/Qp and similar or E.

We will use this to find a basis for E. Let k ∈ G such that νp(k1) 6 · · · 6 νp(kn). Note that here if k1

is an integer, so are all ki, and if kr = 0, then ki>r = 0. Let Im be the set of integer tuples (i = (i1, . . . , im)
such that i1 6 · · · 6 im and kij > 0 for j such that ij /∈ P . Then we set

t0 =


1 if ii = 1

p−νp(k1)T k[1,i1[ if ii > 1 and k1 /∈ Z,
T k[1,i1[ if i1 > 1 and k1 ∈ Z

and for s > 1
ts = p−νp(ks)T k[is,is+1[
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Then we define
ei(k) = t0

∏
s>1,kis 6=0

dts
∏

s>1,kis=0

d log Tis ∈k ΩmC/Qp

and

e0(k) =

{
p−νp(k1)T k if k1 /∈ Z,
T k otherwise

Proposition 4.15. Let k ∈ G such that νp(k1) 6 · · · 6 νp(kn). For m ∈ N, the Zp-module kE
m is free

of finite type. The element e0(k) is a basis for kE0, and for m > 1, the elements ei(k) for i ∈ Im form a
basis of kEm.

Proof. This is a relatively technical proof, that involves juggling around with differentials. It is done by
induction. For now I want to omit it.

The general case, where k does not satisfy νp(k1) 6 · · · 6 νp(kn), can be deduced from this by applying
permutations, as can be imagined easily. More precisely, for each k, we may choose a permutation σk,
that reorders k, only if the above hypothseis is not satisfied. We denote with a prime the new objects.

Proposition 4.16. E is generated by E0 as Zpdga (i.e. the Zp-dga morphism ΩE0/Zp → E is surjective),
and for each r > 1, Filr is a dgi of E generated by V rE0.

Proof. The first claim follows directly after identifying a basis of the homogenous components in the
previous proposition: we look at the homogenous components. For the integral components (k1 ∈ Z
and therefore all other ki ∈ Z) this is just a classical statement. For the case k − 1 /∈ Z, note that
dei(k) = e(1,i)(k) and these elements generate kEm+1 as a Zp-module.

For the second claim, let IrE (orIrE0) be the dgi generated by V rE0 in E (in E0). Since Filr E0 = IrE0 =
V rE0, th inclusion Filr E ⊃ IrE is clear. The other inlcusion follows from the fact, that E0 generates E
as Zp-algebra.

We also need to know, what happens to the basic differentials, if we apply the operators V and F as
well as the derivative d to them.

Proposition 4.17. Let k ∈ G and k′ = (kσk(i)) as described previously. For m ∈ N and i ∈ Im
1. If 1 < i1 or m = 0

dei(k) =

{
pνp(k′1)e(1,i)(k) if k′1 ∈ Z
e(1,i)(k) if k′1 /∈ Z

If i1 = 1,
dei(k) = 0

2. If 1 < i1 or m = 0

V ei(k) =

{
pei(

k
p ) if k

′
1

p ∈ Z
ei(

k
p ) if k

′
1

p /∈ Z

If i1 = 1,

V ei(k) = pei(
k

p
)

3. If 1 < i1 or m = 0

Fei(k) =

{
ei(pk) if k′1 ∈ Z
pei(pk) if k′1 /∈ Z

If i1 = 1,
Fei(k) = ei(pk

Proof. It is enough to show this for the reordered k. In this case, it just follows from the definition.
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Proposition 4.18. Let r ∈ N, k ∈ G. Set s = s(k) = − inf16i6n νp(ki), and

ν(r, k) =


r − s if s > 0, r > s

0 if s > 0, r < s

r if s 6 0

Then
k Filr E = pν(r,k)(kE).

Proof. This is a bit tedious, but not hard.

Corollary 4.19. Multiplication by p induces a monomorphism p : Er → Er+1. The components of

Ê := lim←−Er

are p-torsion free and the canonical map E → Ê is injective.

Proof. Since the ideal Filr E has a grading with respect to G, we have

Er = ⊕k∈GkEr.

For a chosen homogeneous component one verifies easily, that multiplication by p induces a monomorphism
kEr →k Er+1. The first claim follows. Hence, it is also true that Ê is p-torsion free. Moreover, for each
k ∈ G,

⋂
r∈N0

k FilrE = 0, so that the canonical map E → Ê is injective.

We are now in a good position to proof the main theorem of this section. For the first part, we
have to see, that the system E• with V and E0

r = Wr(A) is a de Rham-V -procomplex. Since we have
verified the formulae (4.2), the only point to verify form the definition of de Rham-V -procomplex is (V3)
(V y)d[x] = V ([x]p−1y)d[x] for x ∈ A and y ∈ E0

m. It is sufficient to prove Fd[x] = [x]p−1d[x] because then

V ([x]p−1y)dV [x] = V ([x]p−1ydx) = V (yFd[x]) = d[x].V y

First note, that by passing to the limit F : Er → Er−1 defines an endomorphism of graded algebras on Ê
such that dF = pFd. With F [x] = [x]p we have pFd[x] = dF [x] = p[x]p−1d[x]. As E1 is p-torsion free, we
can divide by p, and get the desired equality.

By the universal property of W•ΩA, this means that the identity on A now extends to a morphism of
de Rham-V -pro complexes

φ• : W•ΩA → E•

and we have to show, that it is in fact an isomorphism. We will construct an inverse to this, by sending
the base elements ei(k) of E• to certain elements of W•ΩA.

We consider again the case k ∈ G with νp(k1) 6 v2 6 · · · 6 νp(kn) — more general cases follow again
with permutations. Let f0(k) ∈W (A) be

f0(k) =

{
p−νp(k1)[T ]k if k1 /∈ Z
[T ]k if k1 ∈ Z

For m > 1 and i ∈ Im

y0 =


1 if i1 = 1

p−νp(k1)[T ]k[1,i1[ if i1 > 1 and k1 /∈ Z
[T ]k[1,i1[ if i1 > 1 and k1 ∈ Z

For s > 1 such that vp(is) < 0

ys = p−νp(kis )[T ]k[is,is+1[

and for s > 1 such that 0 6 νp(kis) <∞

zs = [T ]p
−νp(kis )k

[is,is+1[
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Now set fi(k) ∈WΩmA to be

fi(k) = y0

∏
s>1,νp(kis )<0

dys
∏

s>1,06νp(kis )<∞

zp
νp(kis

)−1
s dzs

∏
s>1,νp(kis )=∞

d log[Tis ].

Now we define a map E• →W•ΩA by sending

ei(k) 7→ fi(k)

One verifies without difficulty that this commutes with d and V . It is compatible with the filtration on
both sides if we define a filtration

Fil′rWΩA = V rWΩA + dV rWΩ•−1
A

which is contained in ker(WΩA →WrΩA. Thus, we defined a projective system of morphism of complexes

ψ•E• →W•ΩA

By definition, φ•ψ• = id, hence it is sufficient, to show that ψ• is surjective.
Consider the injection B ⊂ E0 ⊂W (A), which extends to a morphism of Zp-dga’s ΩB → ΩW (A) which

together with the canonical projection gives

ΩB →WΩA

and this in turn is just the restriction of ψ as they coincide on the base elements ei(k) for k ∈ G ∩ Zn.
Let M ⊂WΩA be the sub-Zp-dga generated by [T ]k for k ∈ G ∩ Zn, M• its image in W•ΩA. Then

ψ• (E• ) ⊃M•

Since ψ• is compatible with V , the subjectivity results form the following identity

WjΩ
i
A =

∑
06r<j

V rM i
j−r +

∑
06r<j

dV rM i−1
j−r

This need some computation to verify, the interested reader should do it as an exercise.
This finishes the proof of the main theorem.

4.4 The endomorphism F on WΩ

The Frobenius on E• induces a Frobenius morphism on W•ΩA-

Theorem 4.20. Let X be a ringed topos of Fp-algebras. The homomorphism of projective systems RF =
FR : W• OX →W•−1 OX extends uniquely to a morphism of projective systems of graded algebras

F : W•ΩX →W•−1ΩX

such that for x ∈ OX

Fd[x] = [x]p−1d[x]

and
FdV = d : Wn OX →WnΩ1

X

In particular, Fd : Wn O→Wn−1Ω1
X is given by the formula

Fdx = [x0]p−1d[x0] + d[x1] + . . .+ dV n−2[xn−1]

Uniqueness follows from the fact, that an element x ∈Wn OX can be written as

x = [x0] + V [x1] + . . .+ V n−1[xn−1]

(and from subjectivity of the projection ΩWn OX → WnΩX). The uniqueness also implies, that for a
morphism of topoi f : X → Y , the induced morphism

W•ΩY → f∗W•ΩX

is compatible with F . We can pass to limits to get a homomorphism of graded algebras

F : WΩX →WΩX

satisfying the usual equalities. Note however, that this endomorphism, since it is an endomorphism of
complexes, coincides with piF in degree i. It would be a useful exercise to show this explicitly.
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4.5 Comparison with crystalline cohomology
During this section, let S be a perfect scheme of characteristic p > 0 - e.g. S = Spec k as before. Let

f : X → S be a an S-scheme of finite type. Let un : (X/Wn(S))cris → Xzar be the canonical projection of
topoi. We will define a morphism

Run(OX/Wn
)→WnΩX (4.3)

and show that it is a quasi-isomorphism in case f is smooth. By applying Rf∗ and RΓ(X,−) to this
morphism, one obtains morphisms

RfX/Wn
(OX/Wn

)→ Rf∗(WnΩX)

with fX/Wn
= f ◦ uX/Wn

: (X/Wn)cris → (Wn)zar, as well as

RΓcris(X/Wn) → RΓ(X,WnΩ)

H•cris(X/Wn) → H• (X,WnΩ)

which are also isomorphisms in case X/S is smooth.
Let us start by constructing the morphism (4.3). Assume first, that there is a closed immersion

X ↪→ Y in a formal smooth schemes over W endowed with a Frobenius lift F : Y → Y σ = Y ×σ W . For
Yn = Y ×Wn let Y n be the PD-envelope of X in Yn. In this setup, recall Berthelot’s comparison theorem

Theorem 4.21. There is a canonical quasi-isomorphism

Run(OX/Wn
)
∼−→ OY n

⊗ΩYn/Wn
= ΩY n/Wn,[−]

where on the right hand side, we find the PD-de Rham complex.

This sets us up to construct a morphism from the PD-de Rham complex on the right hand side to the
de Rham-Witt complex.

From the existence of a Frobenius lift, it follows, that the closed immersion X ↪→ Y extends to an
immersion Wn(X) ↪→ Y . Namely, let

OY
tF−→W( OY1

)→ i1∗Wn(OX)

where the second arrow is by functoriality given by i1 : X ↪→ Y1. It sends the ideal pn OY into
i1∗V

nW (OX) and induces a morphism

OYn → i1∗Wn(OX). (4.4)

Thus, we want to factor X → Y n through Wn(X). The morphism (4.4) sends the ideal of X ↪→ Yn to
i1∗VWn−1(OX), which has a natural PD-structure given by

γn(V x) =
pn−1

n!
V (xn)

Hence, we can consider the induced PD-morphism

OY n
→Wn(OX).

This induces a morphism of de Rham complexes

ΩY n → ΩWn OX
πn−−→WnΩX

factoring through the PD-de Rham complex ΩY n,[−] = ΩY n/(dγk(x) = γk−1(x)dx).

OY n
⊗ΩYn/Wn

//

,,

ΩY n/Wn,[−]
//

**

ΩWn(OX)/(dγk(V x)− γk−1(V x)dx)

��
Run OX/Wn

∼

OO

// WnΩX
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One shows that this construction is independent of choices (of Y and F ), by considering for two different
Y, Y ′ with Frobenius lifts F, F ′ the product (i, i′)X ↪→ Z = Y ×W Y ′ and G = F ×W F ′ to get diagrams

Run OX/Wn

∼ // ΩY n/Wn,[−]

��

// WnΩX

��
Run OX/Wn

∼ // ΩZn/Wn,[−]
// WnΩX

In general, we can’t assume the existence of a closed immersion X ↪→ Y factoring through Wr(X)
globally, but only locally. Then one uses a descent argument with respect to an appropriate covering.
This will be an exercise.

We come to the main result of this section.

Theorem 4.22. The morphism (4.3) is a quasi-isomorphism.

Proof. Because this is a local question, we may assume that X and S are affine – X = SpecA and
S = Spec k – and choose a flat p-adically complete lift B of A over W (k), together with a Frobenius lift
F compatible with σ.

To define the comparison morphism as above, use the immersion of X in the formal scheme Y = Spf(B)
together with F . The ideal of Br → A is pBr, which has a natural PD-structure extending the canonical
one. Thus we don’t have to modify it to obtain the PD-envelope: Bn = Bn and

Rur OX/Wn

∼−→ ΩBr .

Using tF as above, we obtain a morphism Bn →Wr(A) so

ΩBr →WrΩA,

which we have to show is a quasi-isomorphism. It is the same to take the limit on both sides

ΩB →WΩA,

and show that it induces a quasi-isomorphism on graded pieces for the padic filtration on ΩB and the
canonical filtration on WΩA

FilrWΩX =

{
WΩX if r 6 0

ker(WΩX →WrΩX) if r > 1

The question is local, so by étale localisation we may reduce to the case, when A = Fp[T ], B = Zp[T ]
and C = Qp[T ] (to see this, let A be étale over Fp[T ], then by functoriality there is an isomorphism
WrA⊗ FilnWrΩFp[T ]

∼−→ FilnWrΩA, so it is enough to consider A = Fp[T ]).
So we can consider the complex E•• defined earlier: we have to show that ΩB/p

n → E•n is a quasi-
isomorphism. We know that there is an injection

ΩB ↪→ E• ↪→ ΩC/Qp

Recalling the grading G introduced earlier, we note, that ΩB consists exactly of thus forms in E• that
have integral weight. Thus we have for each r

E•r
∼= ΩBr ⊕

⊕
g∈G,g/∈Zn

gE
•
r

Delgine showd that for g /∈ Zn the complex gEr is homotopically trivial. It follows that the inclusion
ΩB ↪→ E is a homotopy equivalence, and for each r the inclusion prΩB ↪→ Filr E is a homotopy equivalence,
such that

ΩBr = ΩB/p
rΩB ↪→ Er

is a quasi-isomorphism.

It remains to show Deligne’s result.
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Proposition 4.23. For g /∈ Zn, the complex gE is homotopically trivial.

Proof. Wlog we may assume that g1 /∈ Z (thus g−1
1 ∈ Z). We have to find a homotopy. For this, let h be the

operator on ΩC/Qp given by the inner product with g−1
1 T1

d
dT1

: for x =
∑
i1<...<im

ai1,...,im(T )d log Ti1 · · · d log Tim ∈
ΩmC

hx = g−1
1

∑
i1<...<im

ai1,...,im(T )d log Ti2 · · · d log Tim .

In particular, if x is an integral (i.e. has integral coefficients) form, hx is also integral, and h preserves
the weight (homogenous degree) g, which is measured solely on the coefficients. With this definition, the
commutator

θg−1
1 T1

d
dT1

= dh+ hd

can be seen as the Lie derivative (using the notation of Cartan, nowadays often denoted by Lg−1
1 T1

d
dT1

,
“Cartan’s magic formula”). Hence, if x is of weight g

(dh+ hd)(x) = x

This is obviously true for function a(T ) , and because of dθXω = θXdω with a form ω and a vector field
X, this is true in general. Moreover, since by hypothesis dx is integral, hdx is by the above reasoning
also integral and so is dhx = x− hdx. Thus indeed hx ∈ gE and h gives a homotopy on gE between the
identity and the zero map.
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