7.1 Let A be a commutative unital ring. how that for any big Witt complex over A the formula $V_{n} d=n d V_{n}$ holds.

7.2 Determin the square root of unity $[-1]_{S}$ in $\mathbb{W}_{S}(A)$.

1. Argue that it is sufficient to do this for $A=\mathbb{Z}$.
2. Show that for $m \in \mathbb{Z}$ there are unique integers r_{e} for $e \in S$ such that

$$
[m]_{S}=\sum_{e \in S} r_{e} V_{e}\left([1]_{\frac{s}{e}}\right)
$$

3. Evaluate the $n^{\text {th }}$ ghost component of this equation to find

$$
m^{n}=\sum_{e \mid n} e r_{e} .
$$

4. Show that from this by Möbius inversion the formula

$$
[m]_{S}=\sum_{n \in S} \frac{1}{n}\left(\sum_{e \mid n} \mu(e) m^{\frac{n}{e}}\right) V_{n}\left([1]_{\frac{S}{n}}\right)
$$

follows.
5. Let

$$
g(n):= \begin{cases}-1 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ 0 & \text { otherwise }\end{cases}
$$

One gets $f(n):=\sum_{e \mid n} g(e)=(-1)^{n}$. Use this to determine

$$
[-1]_{S}=-[1]_{S}+V_{2}\left([1]_{\frac{S}{2}}\right) .
$$

7.3 Determine $d \log \eta_{S}\left([-1]_{S}\right)$ for every big Witt complex.

1. Use the result from the previous exercise to show that

$$
d \log \eta\left([-1]_{S}\right)=d V_{2} \eta\left([1]_{\frac{s}{2}}\right)+V_{2}\left(d \log \eta\left([-1]_{\frac{s}{2}}\right)\right) .
$$

2. By induction follow that

$$
d \log \eta_{S}\left([-1]_{S}\right)=\sum_{r \in \mathbb{N}} 2^{r-1} d V_{2^{r}} \eta_{\frac{s}{2^{r}}}\left([1]_{\frac{s}{2^{r}}}\right) .
$$

3. Show moreover that

$$
d \log \eta\left([-1]_{S}\right) \cdot d \log \eta\left([-1]_{S}\right)=0
$$

4. And also that

$$
d d \log \eta\left([-1]_{S}\right)=0 .
$$

7.4 Use the previous result to show $F_{n}\left(d \log \eta_{S}\left([-1]_{S}\right)\right)=d \log \eta_{\frac{S}{n}}\left([-1]_{\frac{S}{n}}\right)$.

