12.1 In order to show existence of the maps R_T^S , d, F_n on $\mathbb{W}\Omega$ one has to show that applying the maps, which exist already on $\check{\Omega}$, to the kernel of the projection η yield zero in the quotient.

Let for
$$n \in \mathbb{N}$$

$$\omega = \sum_{\alpha} V_n(X_{\alpha}) dy_{1,\alpha} \cdots dy_{q,\alpha} \in \check{\Omega}^q_{\mathbb{W}_S(A)}$$

such that $0 = \eta_{\frac{S}{n}} \left(\sum_{\alpha} x_{\alpha} F_n dy_{1,\alpha} \dots F_n dy_{q,\alpha} \right) \in \mathbb{W}_{\frac{S}{n}} \Omega_A^q$.

- 1. Show that $\eta_T(R_T^S(N_S^q)) = 0$. THis has been done in class.
- 2. Show that $\eta_S(dd\omega) = 0$. This is a rather straight forward calculation.
- 3. Show that $\eta_{\frac{s}{m}}F_m(\omega) = 0$ and $\eta_{\frac{s}{m}}F_m(d\omega) = 0$. [Hint : argue, that it is sufficient to assume that m = p is prime. Consider the two cases p|n and $p \nmid n$.

12.2 Show that the pentagon diagram commutes.

Recall again that every element of $\mathbb{W}_{\frac{S}{n}}$ can be written as a sum of elements of the form $\eta_{\frac{S}{n}}(xF_n dy_1 \cdots dy_q)$ with $x \in \mathbb{W}_{\frac{S}{n}}(A)$ and $y_i \in \mathbb{W}_S(A)$. Then the diagram commutes by the following calculation.

$$\begin{split} V_n\eta_{\frac{S}{n}}(xF_ndy_1\cdots dy_q)\cdot\eta_S(zdw_1\cdots dw_r) &= \eta_S(V_n(x)dy_1\cdots dy_q)\cdot\eta_S(zdw_1\cdots dw_r) \quad \text{by definition of } V_n \\ &= \eta_S(V_n(x)dy_1\cdots dy_q\cdot zdw_1\cdots dw_r) \quad \text{by multiplicativity of } \eta_S \\ &= \eta_S(V_n(xF_n(z))dy_1\cdots dw_r) \quad \text{by definition of } F_n \text{ and } V_n \text{ on } \mathbb{W}(A) \\ &= V_n\eta_{\frac{S}{n}}(xF_n(z)F_ndy_1\cdots F_ndw_r) \quad \text{by definition of } V_n \\ &= V_n(\eta_{\frac{S}{n}}(xF_ndy_1\cdots F_ndy_q)\cdot\eta_{\frac{S}{n}}F_n(zdw_1\cdots dw_r)) \quad \text{by multiplicativity of } \eta_{\frac{S}{n}} \\ &= V_n(\eta_{\frac{S}{n}}(xF_ndy_1\cdots F_ndy_q)\cdot F_n\eta_S(zdw_1\cdots dw_r)) \quad \text{by definition of } F_n \end{split}$$

12.3 Show that on $\mathbb{W}\Omega_A$ the identity $F_mV_n = V_nF_m$ for Frobenius and Verschiebung hold if (M, N) = 1.