11.1 Let $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ e a morphism of λ-rings. Describe the induced funtors f_{*} and f^{*} on λ-modules.
The category of $\left(A, \lambda_{A}\right)$-modules is functorial in the base ring in the sense that a map of λ-rings

$$
f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{b}\right)
$$

induces a functor

$$
f_{*}: \mathscr{M}\left(A, \lambda_{A}\right) \rightarrow \mathscr{M}\left(B, \lambda_{B}\right)
$$

where an $\left(A, \lambda_{A}\right)$-module $\left(N, \lambda_{N}\right)$ is seen as a $\left(B, \lambda_{B}\right)$-module $f_{*}\left(N, \lambda_{N}\right)$ via f. Its left adjoint sends a (B, λ_{B})-module (M, λ_{M}) to the (A, λ_{A})-module

$$
f^{*}\left(M, \lambda_{M}\right)=\left(A, \lambda_{A}\right) \otimes_{\left(B, \lambda_{B}\right)}\left(M, \lambda_{M}\right)
$$

where the tensor product is defined as $A \otimes_{B} M$ on the module and the λ-operation $\lambda_{A \otimes_{B} M}$ associated to it is the composition

$$
A \otimes_{B} M \xrightarrow{\lambda_{A} \otimes_{\lambda_{B}} \lambda_{M}} \mathbb{W}(A) \otimes \mathbb{W}(B) \mathbb{W}(M) \xrightarrow{a \otimes x \rightarrow\left(w_{n}(a) \otimes x_{n}\right)_{n}} \mathbb{W}\left(A \otimes_{B} M\right)
$$

11.2 Let $\left(A, \lambda_{A}\right)$ be a λ-ring. Show that the category $\mathscr{M}\left(A, \lambda_{A}\right)$ of $\left(A, \lambda_{A}\right)$ modules is abelian.
Let $\left(A, \lambda_{A}\right)$ be a λ-ring, M an A-module and $\lambda_{M}: M \rightarrow \mathbb{W}(M)$ a map. Then $\left(M, \lambda_{M}\right)$ is a $\left(A, \lambda_{A}\right)$ module if and only if the components $\lambda_{M, n}=w_{n} \circ \lambda_{M}: M \rightarrow M$ are $\psi_{A, n}=w_{n} \circ \lambda_{A}$-linear and satisfy

$$
\lambda_{M, 1}=\mathrm{id} \quad \text { and } \quad \lambda_{M, n} \circ \lambda_{M, m}=\lambda_{M, n m}
$$

It follows that we may identify the category $\mathscr{M}\left(A, \lambda_{A}\right)$ of $\left(A, \lambda_{A}\right)$-modules with the category $\mathscr{M}\left(A^{\psi}[\mathbb{N}]\right)$ of left modules over the twisted monoid algebra $A^{\psi}[\mathbb{N}]$

$$
\mathscr{M}\left(A, \lambda_{A}\right) \leftrightarrow \mathscr{M}\left(A^{\psi}[\mathbb{N}]\right)
$$

associating to the $\left(A, \lambda_{A}\right)$-module $\left(M, \lambda_{M}\right)$ the A-module M with n acting through $\lambda_{M, n}: M \rightarrow M$. In particular, the catgory $\mathscr{M}\left(A, \lambda_{A}\right)$ is abelian.
11.3 Find a counter example of a λ-ring $\left(A, \lambda_{A}\right)$ to show that in general $\left(A, \lambda_{A}\right)$ is not an $\left(A, \lambda_{A}\right)$-module.

11.4 Show that the functors H and K from the proof of the main theorem on λ-derivations form an adjuntion.

Recall that K takes an A-module M to $f: A \ltimes M \rightarrow A$ (and then forgets ${ }_{A \ltimes M}, 0_{A \ltimes M}$ and $-_{A \ltimes M}$), and H assigns to a ring $f: B \rightarrow A$ over A the A-module $A \times{ }_{B} \Omega_{B}$.

Let ε and η be the natural transformations given by

$$
\begin{aligned}
\varepsilon(1 \otimes d(a, x)) & =x \\
\eta(b) & =(f(b), 1 \otimes d b)
\end{aligned}
$$

Then

$$
H \xlongequal{H \circ \eta} H \circ K \circ H \stackrel{F \circ H}{\Longrightarrow} H
$$

$$
K \xlongequal{\eta \circ K} K \circ H \circ K \xlongequal{K \circ \varepsilon} K
$$

are equal to the identity transformations : $H \circ \eta$ maps $a \otimes d b$ from $H(f: B \rightarrow A)$ to $a \otimes d(f(b), 1 \otimes d b)$ in $(H \circ K \circ H)(f: B \rightarrow A)$ and $\epsilon \circ H$ maps this to $a \cdot(1 \otimes b)=a \otimes b$ in $H(f: B \rightarrow A)$.

Similarly for the second diagram.

