11.1 Let $f : (A, \lambda_A) \to (B, \lambda_B)$ e a morphism of λ -rings. Describe the induced functors f_* and f^* on λ -modules.

The category of (A, λ_A) -modules is functorial in the base ring in the sense that a map of λ -rings

$$f: (A, \lambda_A) \to (B, \lambda_b)$$

induces a functor

$$f_*: \mathscr{M}(A, \lambda_A) \to \mathscr{M}(B, \lambda_B)$$

where an (A, λ_A) -module (N, λ_N) is seen as a (B, λ_B) -module $f_*(N, \lambda_N)$ via f. Its left adjoint sends a (B, λ_B) -module (M, λ_M) to the (A, λ_A) -module

$$f^*(M,\lambda_M) = (A,\lambda_A) \otimes_{(B,\lambda_B)} (M,\lambda_M)$$

where the tensor product is defined as $A \otimes_B M$ on the module and the λ -operation $\lambda_{A \otimes_B M}$ associated to it is the composition

$$A \otimes_B M \xrightarrow{\lambda_A \otimes_{\lambda_B} \lambda_M} \mathbb{W}(A) \otimes \mathbb{W}(B) \mathbb{W}(M) \xrightarrow{a \otimes x \mapsto (w_n(a) \otimes x_n)_n} \mathbb{W}(A \otimes_B M)$$

11.2 Let (A, λ_A) be a λ -ring. Show that the category $\mathcal{M}(A, \lambda_A)$ of (A, λ_A) -modules is abelian.

Let (A, λ_A) be a λ -ring, M an A-module and $\lambda_M : M \to W(M)$ a map. Then (M, λ_M) is a (A, λ_A) module if and only if the components $\lambda_{M,n} = w_n \circ \lambda_M : M \to M$ are $\psi_{A,n} = w_n \circ \lambda_A$ -linear and satisfy

$$\lambda_{M,1} = \mathrm{id}$$
 and $\lambda_{M,n} \circ \lambda_{M,m} = \lambda_{M,nm}$

It follows that we may identify the category $\mathscr{M}(A, \lambda_A)$ of (A, λ_A) -modules with the category $\mathscr{M}(A^{\psi}[\mathbb{N}])$ of left modules over the twisted monoid algebra $A^{\psi}[\mathbb{N}]$

$$\mathscr{M}(A,\lambda_A) \leftrightarrow \mathscr{M}(A^{\psi}[\mathbb{N}])$$

associating to the (A, λ_A) -module (M, λ_M) the A-module M with n acting through $\lambda_{M,n} : M \to M$. In particular, the catgory $\mathcal{M}(A, \lambda_A)$ is abelian.

11.3 Find a counter example of a λ -ring (A, λ_A) to show that in general (A, λ_A) is not an (A, λ_A) -module.

11.4 Show that the functors H and K from the proof of the main theorem on λ -derivations form an adjuntion.

Recall that K takes an A-module M to $f : A \ltimes M \to A$ (and then forgets $+_{A \ltimes M}, 0_{A \ltimes M}$ and $-_{A \ltimes M}$), and H assigns to a ring $f : B \to A$ over A the A-module $A \times_B \Omega_B$.

Let ε and η be the natural transformations given by

$$arepsilon(1\otimes d(a,x)) = x$$

 $\eta(b) = (f(b), 1\otimes db)$

Then

$$H \overset{H \circ \eta}{\Longrightarrow} H \circ K \circ H^{\varepsilon \circ H} \overset{H \circ H}{\Longrightarrow} H$$

$$K \stackrel{\eta \circ K}{\Longrightarrow} K \circ H \circ K \stackrel{K \circ \varepsilon}{\Longrightarrow} K$$

are equal to the identity transformations : $H \circ \eta$ maps $a \otimes db$ from $H(f : B \to A)$ to $a \otimes d(f(b), 1 \otimes db)$ in $(H \circ K \circ H)(f : B \to A)$ and $\epsilon \circ H$ maps this to $a \cdot (1 \otimes b) = a \otimes b$ in $H(f : B \to A)$.

Similarly for the second diagram.