10.1 Describe the left adjoint of the forgeful functor, which sends an (A, λ_A) module to its underlying set

The forgetful functor is given by

$$(M, \lambda_M) \mapsto M.$$

It has a left adjoint F sendiung a set S to a free (A, λ_A) module $(F(S), \lambda_{F(S)})$, where F(S) is the free A-module generated by the symbols

$$\lambda_{F(S),n}(s) \quad \text{ for all } n \in \mathbb{N}, s \in S$$

and the lambda-operation $\lambda_{F(S)}: F(S) \to \text{is componentwise defined by}$

$$\lambda_{F(S),m}\left(\sum_{\substack{s\in S\\n\in\mathbb{N}}}a_{s,n}\lambda_{F(S),n}(s)\right) = \sum_{\substack{s\in S\\n\in\mathbb{N}}}\psi_{A,m}(a_{s,n})\lambda_{F(S),mn}(s)$$

It is clear, that the $\lambda_{F(S),m}$ are $\psi_{A,m}$ -linear, and satisfy by definition $\lambda_{F(A),1} = \mathrm{id}_{F(S)}$ and $\lambda_{F(S),m} \circ \lambda_{F(S),n} = \lambda_{F(S),mn}$. Thus by what we said above, $(F(S), \lambda_{F(S)})$ is an (A, λ_A) -module. The unit of the adjunction is given by sending $s \in S$ to $\lambda_{F(S),1}(s) \in F(S)$ and the counit is given by sending $\sum a_{x,n}\lambda_{F(M),n}(x) \in F(M)$ to $\sum a_{x,n}\lambda_{M,n}(x) \in M$. The triangle identities hold.

- **10.2** Let (A, λ_A) be a λ -ring. Describe F(A) for the set A.
- 10.3 Show that (A, ψ_A) is an (A, λ_A) -module.
- 10.4 Show that the (A, λ_A) -modules from two previous exercises are in general not the same
- 10.5 Let $U : \mathscr{A}_{\lambda} \to \mathscr{A}$ be the forgetful functor from the category of λ -rings to the category of rings. Show that U creates limits in the category of λ -rings.

10.6 Describe the unit and the counit of the adjoint functors U_{A,λ_A} and R_{A,λ_A} .

The counit of this adjunction is given by $\epsilon_B \circ p$ via :

$$C \xrightarrow{\epsilon_B \circ p_1} B$$

$$\downarrow^{p_2} \qquad \downarrow^f$$

$$A = A$$

The unit is given by the unique map η in

$$\begin{array}{c} (B, \lambda_{\mathcal{B}})r & (\mathfrak{O}, \lambda_{C}) \\ f \\ \downarrow \\ (A, \lambda_{A}) = (A, \lambda_{A}) \end{array}$$

defined by the universal property of the pull back

10.7 Describe the unit and counit of the adjunction (U', R').