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3 Crystalline cohomology
As we have mentioned, one of the objectives to construct a de Rham–Witt complex was to be able

to compute crystalline cohomology more explicitly. In this section, we want to give a quick review of the
basic concepts of crystalline cohomology. The standard reference for crystalline cohomology is of course
Pierre Berthelot and Arthur Ogus’ book [1]. A ver quick and to the point overview can be found in
Antoine Chambert-Loir’s survey article [2] and in Luc Illusie’s paper [3].

3.1 Divided powers
The idea of crystalline cohomology goes back, as so many concepts in algebraic geometry, to Grothen-

dieck. It was clear, at a very early stage of the idea, that so called divided powers would be needed for
the construction, as it basically concerns an integration process.

Definition 3.1. Let A be a ring and I ⊂ A an ideal. A PD-structure on I is a sequence of maps
γn : I → A such that

— γ0(x) = 1 and γ1(x) = x for all x ∈ I
— γn(x) ∈ I for n > 1 and x ∈ I
— γn(x+ y) =

∑
i+j=n γi(x)γj(y) for all x, y ∈ I

— γn(λx) = λnγn(x) for all λ ∈ A and x ∈ I
— γn(x)γm(x) =

(
m+n
n

)
γm+n(x) for all x ∈ I and m,n ∈ N

— γm(γn(x)) = (mn)!
m!(n!)m γmn(x) for all x ∈ I and m,n ∈ N

In this case, we say that A is a PD-ring.

Where do these formulae come from? They ensure that morally “γn(x) = xn

n! ”. These elements are
needed to integrate — which should be clear if we just recall basic formulae from Calculus.

Examples 3.2. 1. For a perfect ring A of characteristic p > 0, the ideal (p) in the ring of Witt
vectors W (A) has a natural PD-structure, given by γn(p) = pn

n! which makes sense, sind the p-adic
valuation of p

n

n! is positive for all n ∈ N0 and strictly positive for n > 1.
2. For any ring A, we define an A-PD-algebra in n variables

A〈x1, . . . xn〉 =
⊕
r>0

Γr

where a base of Γr as A-modules is given by symbols x[k1]1 · · ·x[kn]n such that k1 + . . . kn = r,
ki ∈ N0. The algebra structure is given by the relations x[m]

i x
[n]
i =

(
m+n
n

)
x
[m+n]
i . The ideal

I = A+〈x1, . . . , xn〉 =
⊕

r>1 Γr then has a unique PD-structure such that γr(xi) = x
[r]
i .

Remark 3.3. Note that if A is annihilated by a n > 2, then a PD ideal I ⊂ A is automatically a nil-ideal,
since xn = n!γn(x) = 0 for every x ∈ I. In particular SpecA and SpecA/I have the same underlying
topological space.

The idea behind crystalline cohomology is to locally compute de Rham-type complexes with additional
PD-structure. Let’s take the non-PD setting as a model:

Let T be a topos and A a (commutative unital) ring of T .

Definition 3.4. We call an anticommutative graded A-algebra B, in positive degrees, with an A-linear
differential d : Bi → Bi+1 such that d2 = 0 and d(xy) = (dx)y + (−1)ixdy, a differential graded A-
algebra B. A morphism of differential graded A-algebras is a morphism of A-algebras compatible with
the differential structures.

Recall that for an A-algebra R the de Rham complex ΩR/A is universal in the sense that for any A-dga
B, every A-algebra morphism R→ B0 extends in a unique way to an A-dga morphism ΩR/A → B.

Proposition 3.5. Let A be as above and denote by dga>0(A) the category of differential graded A algebras.
The functor

Alg(A)→ dga>0(A) , C 7→ ΩC/A

is left adjoint to the forgetful functor

dga>0(A)→ Alg(A) , B → B0.
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We also say, the object ΩC/A is initial in the category dga>0(A).

Definition 3.6. Let B be an A-dga. A differential graded B-module (or B-dgm) is a graded B-module
M together with a differential d : M i → M i+1 such that d2 = 0 and d(bx) = (db)x + (−1)ibdx for
b ∈ Bi and x ∈M j . A morphism of B-dgm’s is a morphism of B-modules compatible with the differential
structure. We can define left and right B-dga’s. Every right B-dgm can be seen as a left B-dgm via the
anti-commutative law bx = (−1)ijxb.A differential graded ideal (dgi) of B is a sub B-dgm of B.

If I0 ⊂ B0 is an ideal, then the ideal in B generated by I0 and dI0 is a dgi of B with zero component
I0, and it’s the smallest dgi with this property (it is in fact the dgi generated by I0). Furthermore, for
n ∈ N, In is generated additively by elements of the form bdx1 · · · dxn with b ∈ B0 and xi ∈ I0. If I is a
B-dgi, B/I is an A-dga.

Definition 3.7. Let E be a B0-module. A connection on E with respect to B is a morphism

∇ : E → E ⊗B0 B1

such that ∇(bx) = b∇x+ x⊗ db.

Every connection ∇ extends in a unique way to a morphism ∇ : E ⊗B0 Bi → E ⊗B0 Bi+1 such that
∇(b⊗ x) = b∇x+ x⊗ db for b ∈ Bi and x ∈ E.

Definition 3.8. We say that ∇ is integrable if ∇2 = 0. If this is the case, (E ⊗B,∇) is a B-dgm

We want to take this idea to the PD-world.

Definition 3.9. Let (B, I, γ) ba an A-PD-algebra. The ideal of ΩB/A generated by the elements d(γn(x))−
γn−1(x)dx for x ∈ I is a dgi J . Thus the quotient

ΩB/A,γ := ΩB/A/J

is an A-dga called the PD-de Rham complex of B/A.

It is the initial object in the category of PD-A-dga’s: if C is an A-dga with a PD-ideal K of C0 and
PD-structure δ compatible with d in the sense that d(δnx) = δn−1(x)dx, then any morphism of A-PD-
algebras f0 : B → C0 extends uniquely to a homomorphism of A-dga’s f : ΩB/A,γ → C. Now let (A, I, γ)

be a PD-ring in T , B an A-algebra, J ⊂ B an ideal. Let B = DB,γ(J) be the decided power envelope
of (B, J) with respect to γ (this is B〈J〉 from the example above modes out by relations, that make the
PD-structure compatible with γ). Denote by J the the associated PD-ideal. B is generated as B-algebra
by the divided powers x[n], for x ∈ J .

Proposition 3.10. The derivation d : B → Ω1
B/A extends in a unique way to a derivation d : B → BΩ1

B/A

such that
dx[n] = x[n−1] ⊗ dx,

for x ∈ J and n ∈ N.

In [1] this comes out of the theory of hyper PD-stratifications, but it can also be verified directly.
The derivation d : B → B⊗B Ω1

B/A then extends uniquely to B⊗B ΩB/A and d2 = 0. The universality
of the A-dga ΩB,A,[−] shows that there is a unique homomorphism

ΩB,A,[−] → B ⊗B ΩB/A (3.1)

which is the identity in degree zero.

Proposition 3.11. The homomorphism (3.1) is an isomorphism.

Proof. The homomorphism of grade A-aglebras

B ⊗B ΩB/A → ΩB/A,[−]

which is the identity in degree zero and given by the composition

B ⊗B Ω1
B/A → Ω1

B/A
→ Ω1

B/A,[−]

is compatible with the differential and therefore an inverse of the morphism in question.
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3.2 Crystalline site and crystalline cohomology
Let S be a scheme such that p is locally nilpotent, I a quasi-coherent ideal of OS , and γ a PD-structure

on I — in other words (S, I, γ) is a PD-scheme. Think of S = Wn(S0) for S0 the Spec of a perfect field.
Let X be an S-scheme such that γ extends to a PD-structure on X. We will define the crystalline site of
X with respect to (S, I, γ). The objects are S-PD-thickenings of Zariski open subsets of X.

The crystalline site of X over S is denoted by Cris(X/S).
— The objects are triples (U, T, δ), where U is a Zariski open of X, T is an S scheme together with a

closed immersion U ↪→ T given by an ideal J with PD-structure δ compatible with γ (thus J is a
nil-ideal and U and T have the same underlying topological space).

— The morphisms are morphisms of triple (U, T, δ) → (U ′, T ′, δ′) sending U → U ′ and T → T ′

compatible with the PD-structure.
— The covering families are (Uα, Tα, δα)→ (U, T, δ) such that the Tα cover T .

The associated tops is denoted by (X/S)cris. One can describe a sheaf E on the crystalline site explicitly,
by giving for each (U, T, δ) a sheaf E (U,T,δ) on T for the Zariski topology, and for each map f : (U ′, T ′, δ′)→
(U, T, δ) a transition map f∗ E (U,T,δ) → E (U ′,T ′,δ′) which satisfies transitivity and is an isomorphism if
T ′ → T is an open immersion. A useful feature of this interpretation is, that the Zariski site has enough
points, which means, that we can check if a map of sheaves ν : F → G is an isomorphism, by looking at
stalks: It is enough to check that for each x ∈ X and each S-PD-thickening T of a Zariski neighbourhood
of x, (FT )x → (GT )x is an isomorphism.

Examples 3.12. The structure sheaf OX/S is given by the cofunctor (U, T, δ) 7→ OT . But also the
cofunctor (U, T, δ) 7→ OU defines a sheaf of rings denoted by OX . And the PD-ideal sheaf JX/S ⊂ OX/S

that associated to (U, T, δ) the defining ideal of the closed immersion U ↪→ T , (U, T, δ) 7→ Ker(OT → OU ).
In fact, there is a short exact sequence

0→JX/S → OX/S → OX → 0.

Definition 3.13. A sheaf of OX/S-modules is a crystal if all the transition morphisms are isomorphisms.

It is preferable to work with the crystalline topos as opposed to the crystalline site, because one has
more functoriality: one has for example inverse image sheaves. But this needs some checking and abstract
nonsense.

Example 3.14. An example to keep in mind is that of a scheme X over a perfect field K of characteristic
p > 0, and S = Wn(k) with the canonical PD-structure. Then the objects of Cris(X/Wn) are given by
diagrams

U �
� //

��

T

��
Spec k // SpecWn

such that the ideal Ker(OT → OU ) has a PD-structure compatible with the canonical Witt vector PD-
structure.

To define the global section functor recall that for a topos T and T ∈ T , Γ(T,−) is the functor
F 7→ HomT (F, T ). If e is the final object in T , we write Γ(e, F ) =: Γ(T , F ) =: Γ(F ). The final object for
a topos is the sheafification of the constant pre sheaf given by {0} on each U . For an ordinary topological
space X this sheaf is represented by the open subset X of X itself. In case of the crystalline topos, it is
not representable however. In general, a section s ∈ Γ(T , F ) = Hom(e, F ) is a compatible collection of
sections sT ∈ F (T ) for every T ∈ X, i.e. an element in lim←−T∈X F (T ).

Let XZar be the Zariski topos of X. Then there is a canonical projection

uX/S : (X/S)cris → XZar

given by

uX/S∗ : Γ(U, uX/S,∗ E ) = Γ((U/S)cris,E )

u−1X/S : (u−1X/S(F ))(U,T,δ) = F
∣∣
U
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It is clear, that u−1X/S commutes with arbitrary inverse limits, so that we really have a morphism of topoi,
but not of ringed topoi. It is a morphism of ringed topoi if X is considered with the sheaf f−1 OS (for
f : X → S). If fcris : (X/S)cris? → S is the projection, then there is a canonical isomorphism in the
derived category

Rfcris E = Rf∗RuX/S∗ E

In particular, RΓ(XZar, Ru∗ E ) ∼= RΓ((X/S)cris,E ).
Recall now the calculus of (X/S)cris in case there is a closed immersion j : X → Z into a smooth

scheme. In general the ideal Ker(OZ → OX) does not have divided powers,thus we consider the PD-
envelopeZ of X in Z, meaning, that we formally add divided powers to the defining ideal in a universal
way, and obtain X ↪→ Z → Z. Moreover for a crystal E there is a unique integrable connection

d : E Z → E Z ⊗Ω1
Z/S

compatible with the PD-structure. If E = OX/S this gives just the complex OZ ⊗ΩZ/S = ΩZ/S,[−]. A
fundamental theorem of Berthelot and Grothendieck says:

Theorem 3.15. There is a canonical isomorphism

RuX/S∗ E
∼−→ E Z ⊗ΩZ/S .

In particular, for E = OX/S this isomorphism is compatible with the natural product structures on
both sides. The proof uses a simplicial complex called the Čech-Alexander complex and the so-called
crystalline Poincaré lemma. Even if globally X is not smoothable, it is locally, and using cohomological
descent, we can treat this case as well.

Lemma 3.16. Let A be a ring. The de Rham complex of A[t1, . . . , tn] with coefficients in A〈t1, . . . , tn〉
(with the integrable connection t[k]i 7→ t

[k−1]
i dti) is a resolution of A.

Now let S = Wn. If X has a smooth lift over Wn, crystalline cohomology of X corresponds to the de
Rham cohomology of the oft.

Corollary 3.17. If Z/Wn is a smooth lift of X, then Z = Z and

H∗cris(X/Wn) = H∗dR(Z/Wn).

The isomorphism of Theorem 3.15 is functorial in X and compatible with base change of (S, I, γ). In
particular, let X/k and S = Wn with Frobenius σ. Then the absolute Frobenius of X, F : X → X induces
a σ-linear morphism in cohomology

F : H∗(X/Wn)→ H∗(X/Wn).
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