3 Crystalline cohomology

As we have mentioned, one of the objectives to construct a de Rham–Witt complex was to be able to compute crystalline cohomology more explicitly. In this section, we want to give a quick review of the basic concepts of crystalline cohomology. The standard reference for crystalline cohomology is of course Pierre Berthelot and Arthur Ogus' book [1]. A ver quick and to the point overview can be found in Antoine Chambert-Loir's survey article [2] and in Luc Illusie's paper [3].

3.1 Divided powers

The idea of crystalline cohomology goes back, as so many concepts in algebraic geometry, to Grothendieck. It was clear, at a very early stage of the idea, that so called divided powers would be needed for the construction, as it basically concerns an integration process.

Definition 3.1. Let A be a ring and $I \subset A$ an ideal. A PD-structure on I is a sequence of maps $\gamma_n : I \to A$ such that

 $\begin{array}{l} -& \gamma_0(x) = 1 \text{ and } \gamma_1(x) = x \text{ for all } x \in I \\ -& \gamma_n(x) \in I \text{ for } n \geqslant 1 \text{ and } x \in I \\ -& \gamma_n(x+y) = \sum_{i+j=n} \gamma_i(x)\gamma_j(y) \text{ for all } x, y \in I \\ -& \gamma_n(\lambda x) = \lambda^n \gamma_n(x) \text{ for all } \lambda \in A \text{ and } x \in I \\ -& \gamma_n(x)\gamma_m(x) = \binom{m+n}{n}\gamma_{m+n}(x) \text{ for all } x \in I \text{ and } m, n \in \mathbb{N} \\ -& \gamma_m(\gamma_n(x)) = \frac{(mn)!}{m!(n!)^m}\gamma_{mn}(x) \text{ for all } x \in I \text{ and } m, n \in \mathbb{N} \end{array}$

In this case, we say that A is a PD-ring.

Where do these formulae come from? They ensure that morally " $\gamma_n(x) = \frac{x^n}{n!}$ ". These elements are needed to integrate — which should be clear if we just recall basic formulae from Calculus.

Examples 3.2. 1. For a perfect ring A of characteristic p > 0, the ideal (p) in the ring of Witt vectors W(A) has a natural PD-structure, given by $\gamma_n(p) = \frac{p^n}{n!}$ which makes sense, sind the *p*-adic valuation of $\frac{p^n}{n!}$ is positive for all $n \in \mathbb{N}_0$ and strictly positive for $n \ge 1$.

2. For any ring A, we define an A-PD-algebra in n variables

$$A\langle x_1, \dots x_n \rangle = \bigoplus_{r \ge 0} \Gamma$$

where a base of Γ^r as A-modules is given by symbols $x_1^{[k_1]} \cdots x_n^{[k_n]}$ such that $k_1 + \ldots k_n = r$, $k_i \in \mathbb{N}_0$. The algebra structure is given by the relations $x_i^{[m]} x_i^{[n]} = \binom{m+n}{n} x_i^{[m+n]}$. The ideal $I = A^+ \langle x_1, \ldots, x_n \rangle = \bigoplus_{r \ge 1} \Gamma^r$ then has a unique PD-structure such that $\gamma_r(x_i) = x_i^{[r]}$.

Remark 3.3. Note that if A is annihilated by a $n \ge 2$, then a PD ideal $I \subset A$ is automatically a nil-ideal, since $x^n = n!\gamma_n(x) = 0$ for every $x \in I$. In particular Spec A and Spec A/I have the same underlying topological space.

The idea behind crystalline cohomology is to locally compute de Rham-type complexes with additional PD-structure. Let's take the non-PD setting as a model:

Let \mathscr{T} be a topos and A a (commutative unital) ring of \mathscr{T} .

Definition 3.4. We call an anticommutative graded A-algebra B, in positive degrees, with an A-linear differential $d: B^i \to B^{i+1}$ such that $d^2 = 0$ and $d(xy) = (dx)y + (-1)^i x dy$, a differential graded A-algebra B. A morphism of differential graded A-algebras is a morphism of A-algebras compatible with the differential structures.

Recall that for an A-algebra R the de Rham complex $\Omega_{R/A}$ is universal in the sense that for any A-dga B, every A-algebra morphism $R \to B^0$ extends in a unique way to an A-dga morphism $\Omega_{R/A} \to B$.

Proposition 3.5. Let A be as above and denote by $dga^{\geq 0}(A)$ the category of differential graded A algebras. The functor

$$\operatorname{Alg}(A) \to \operatorname{dga}^{\geqslant 0}(A) , \ C \mapsto \Omega_{C/A}$$

is left adjoint to the forgetful functor

$$dga^{\geq 0}(A) \to \mathcal{A}lg(A) , B \to B^0.$$

We also say, the object $\Omega_{C/A}$ is initial in the category $dga^{\geq 0}(A)$.

Definition 3.6. Let *B* be an *A*-dga. A differential graded *B*-module (or *B*-dgm) is a graded *B*-module *M* together with a differential $d : M^i \to M^{i+1}$ such that $d^2 = 0$ and $d(bx) = (db)x + (-1)^i b dx$ for $b \in B^i$ and $x \in M^j$. A morphism of *B*-dgm's is a morphism of *B*-modules compatible with the differential structure. We can define left and right *B*-dga's. Every right *B*-dgm can be seen as a left *B*-dgm via the anti-commutative law $bx = (-1)^{ij}xb$. A differential graded ideal (dgi) of *B* is a sub *B*-dgm of *B*.

If $I^0 \subset B^0$ is an ideal, then the ideal in B generated by I^0 and dI^0 is a dgi of B with zero component I^0 , and it's the smallest dgi with this property (it is in fact the dgi generated by I^0). Furthermore, for $n \in \mathbb{N}$, I^n is generated additively by elements of the form $bdx_1 \cdots dx_n$ with $b \in B^0$ and $x_i \in I^0$. If I is a B-dgi, B/I is an A-dga.

Definition 3.7. Let E be a B^0 -module. A connection on E with respect to B is a morphism

$$\nabla: E \to E \otimes_{B^0} B^1$$

such that $\nabla(bx) = b\nabla x + x \otimes db$.

Every connection ∇ extends in a unique way to a morphism $\nabla : E \otimes_{B^0} B^i \to E \otimes_{B^0} B^{i+1}$ such that $\nabla (b \otimes x) = b \nabla x + x \otimes db$ for $b \in B^i$ and $x \in E$.

Definition 3.8. We say that ∇ is integrable if $\nabla^2 = 0$. If this is the case, $(E \otimes B, \nabla)$ is a B-dgm

We want to take this idea to the PD-world.

Definition 3.9. Let (B, I, γ) be an A-PD-algebra. The ideal of $\Omega_{B/A}$ generated by the elements $d(\gamma_n(x)) - \gamma_{n-1}(x)dx$ for $x \in I$ is a dgi J. Thus the quotient

$$\Omega_{B/A,\gamma} := \Omega_{B/A}/J$$

is an A-dga called the PD-de Rham complex of B/A.

It is the initial object in the category of PD-A-dga's: if C is an A-dga with a PD-ideal K of C^0 and PD-structure δ compatible with d in the sense that $d(\delta_n x) = \delta_{n-1}(x)dx$, then any morphism of A-PDalgebras $f^0: B \to C^0$ extends uniquely to a homomorphism of A-dga's $f: \Omega_{B/A,\gamma} \to C$. Now let (A, I, γ) be a PD-ring in \mathscr{T} , B an A-algebra, $J \subset B$ an ideal. Let $\overline{B} = D_{B,\gamma}(J)$ be the decided power envelope of (B, J) with respect to γ (this is $B\langle J \rangle$ from the example above modes out by relations, that make the PD-structure compatible with γ). Denote by \overline{J} the the associated PD-ideal. \overline{B} is generated as B-algebra by the divided powers $x^{[n]}$, for $x \in J$.

Proposition 3.10. The derivation $d: B \to \Omega^1_{B/A}$ extends in a unique way to a derivation $d: \overline{B} \to \overline{B}\Omega^1_{B/A}$ such that

$$dx^{[n]} = x^{[n-1]} \otimes dx,$$

for $x \in J$ and $n \in \mathbb{N}$.

In [1] this comes out of the theory of hyper PD-stratifications, but it can also be verified directly.

The derivation $d: \overline{B} \to \overline{B} \otimes_B \Omega^1_{B/A}$ then extends uniquely to $\overline{B} \otimes_B \Omega_{B/A}$ and $d^2 = 0$. The universality of the A-dga $\Omega_{\overline{B},A,[-]}$ shows that there is a unique homomorphism

$$\Omega_{\overline{B},A,[-]} \to \overline{B} \otimes_B \Omega_{B/A} \tag{3.1}$$

which is the identity in degree zero.

Proposition 3.11. The homomorphism (3.1) is an isomorphism.

Proof. The homomorphism of grade A-aglebras

$$\overline{B} \otimes_B \Omega_{B/A} \to \Omega_{\overline{B}/A}$$

which is the identity in degree zero and given by the composition

$$\overline{B} \otimes_B \Omega^1_{B/A} \to \Omega^1_{\overline{B}/A} \to \Omega^1_{\overline{B}/A, [-]}$$

is compatible with the differential and therefore an inverse of the morphism in question.

3.2 Crystalline site and crystalline cohomology

Let S be a scheme such that p is locally nilpotent, I a quasi-coherent ideal of \mathcal{O}_S , and γ a PD-structure on I — in other words (S, I, γ) is a PD-scheme. Think of $S = W_n(S_0)$ for S_0 the Spec of a perfect field. Let X be an S-scheme such that γ extends to a PD-structure on X. We will define the crystalline site of X with respect to (S, I, γ) . The objects are S-PD-thickenings of Zariski open subsets of X.

The crystalline site of X over S is denoted by $\operatorname{Cris}(X/S)$.

- The objects are triples (U, T, δ) , where U is a Zariski open of X, T is an S scheme together with a closed immersion $U \hookrightarrow T$ given by an ideal J with PD-structure δ compatible with γ (thus J is a nil-ideal and U and T have the same underlying topological space).
- The morphisms are morphisms of triple $(U, T, \delta) \to (U', T', \delta')$ sending $U \to U'$ and $T \to T'$ compatible with the PD-structure.

— The covering families are $(U_{\alpha}, T_{\alpha}, \delta_{\alpha}) \to (U, T, \delta)$ such that the T_{α} cover T.

The associated tops is denoted by $(X/S)_{cris}$. One can describe a sheaf \mathscr{E} on the crystalline site explicitly, by giving for each (U, T, δ) a sheaf $\mathscr{E}_{(U,T,\delta)}$ on T for the Zariski topology, and for each map $f : (U', T', \delta') \to (U, T, \delta)$ a transition map $f^* \mathscr{E}_{(U,T,\delta)} \to \mathscr{E}_{(U',T',\delta')}$ which satisfies transitivity and is an isomorphism if $T' \to T$ is an open immersion. A useful feature of this interpretation is, that the Zariski site has enough points, which means, that we can check if a map of sheaves $\nu : F \to G$ is an isomorphism, by looking at stalks: It is enough to check that for each $x \in X$ and each S-PD-thickening T of a Zariski neighbourhood of $x, (F_T)_x \to (G_T)_x$ is an isomorphism.

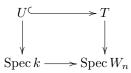
Examples 3.12. The structure sheaf $\mathscr{O}_{X/S}$ is given by the cofunctor $(U, T, \delta) \mapsto \mathscr{O}_T$. But also the cofunctor $(U, T, \delta) \mapsto \mathscr{O}_U$ defines a sheaf of rings denoted by \mathscr{O}_X . And the PD-ideal sheaf $\mathscr{J}_{X/S} \subset \mathscr{O}_{X/S}$ that associated to (U, T, δ) the defining ideal of the closed immersion $U \hookrightarrow T$, $(U, T, \delta) \mapsto \operatorname{Ker}(\mathscr{O}_T \to \mathscr{O}_U)$. In fact, there is a short exact sequence

$$0 \to \mathscr{J}_{X/S} \to \mathscr{O}_{X/S} \to \mathscr{O}_X \to 0.$$

Definition 3.13. A sheaf of $\mathcal{O}_{X/S}$ -modules is a crystal if all the transition morphisms are isomorphisms.

It is preferable to work with the crystalline topos as opposed to the crystalline site, because one has more functoriality: one has for example inverse image sheaves. But this needs some checking and abstract nonsense.

Example 3.14. An example to keep in mind is that of a scheme X over a perfect field K of characteristic p > 0, and $S = W_n(k)$ with the canonical PD-structure. Then the objects of $\operatorname{Cris}(X/W_n)$ are given by diagrams



such that the ideal $\operatorname{Ker}(\mathscr{O}_T \to \mathscr{O}_U)$ has a PD-structure compatible with the canonical Witt vector PD-structure.

To define the global section functor recall that for a topos \mathscr{T} and $T \in \mathscr{T}$, $\Gamma(T, -)$ is the functor $F \mapsto \operatorname{Hom}_{\mathscr{T}}(F,T)$. If e is the final object in \mathscr{T} , we write $\Gamma(e,F) := \Gamma(\mathscr{T},F) := \Gamma(F)$. The final object for a topos is the sheafification of the constant pre sheaf given by $\{0\}$ on each U. For an ordinary topological space X this sheaf is represented by the open subset X of X itself. In case of the crystalline topos, it is not representable however. In general, a section $s \in \Gamma(\mathscr{T},F) = \operatorname{Hom}(e,F)$ is a compatible collection of sections $s_T \in F(T)$ for every $T \in X$, i.e. an element in $\varprojlim_{T \in X} F(T)$.

Let X_{Zar} be the Zariski topos of X. Then there is a canonical projection

$$u_{X/S}: (X/S)_{cris} \to X_{Zar}$$

given by

$$\begin{aligned} u_{X/S*} : & \Gamma(U, u_{X/S,*} \mathscr{E}) = \Gamma((U/S)_{\mathrm{cris}}, \mathscr{E}) \\ u_{X/S}^{-1} : & (u_{X/S}^{-1}(\mathscr{F}))_{(U,T,\delta)} = \mathscr{F} \Big|_{U} \end{aligned}$$

Universität Regensburg

It is clear, that $u_{X/S}^{-1}$ commutes with arbitrary inverse limits, so that we really have a morphism of topoi, but not of ringed topoi. It is a morphism of ringed topoi if X is considered with the sheaf $f^{-1} \mathcal{O}_S$ (for $f: X \to S$). If $f_{\text{cris}}: (X/S)_{\text{cris}}? \to S$ is the projection, then there is a canonical isomorphism in the derived category

$$Rf_{\mathrm{cris}}\,\mathscr{E} = Rf_*Ru_{X/S*}\,\mathscr{E}$$

In particular, $R\Gamma(X_{\text{Zar}}, Ru_* \mathscr{E}) \cong R\Gamma((X/S)_{\text{cris}}, \mathscr{E}).$

Recall now the calculus of $(X/S)_{\text{cris}}$ in case there is a closed immersion $j: X \to Z$ into a smooth scheme. In general the ideal $\operatorname{Ker}(\mathscr{O}_Z \to \mathscr{O}_X)$ does not have divided powers, thus we consider the PDenvelope \overline{Z} of X in Z, meaning, that we formally add divided powers to the defining ideal in a universal way, and obtain $X \hookrightarrow \overline{Z} \to Z$. Moreover for a crystal \mathscr{E} there is a unique integrable connection

$$d: \mathscr{E}_{\overline{Z}} \to \mathscr{E}_{\overline{Z}} \otimes \Omega^1_{Z/S}$$

compatible with the PD-structure. If $\mathscr{E} = \mathscr{O}_{X/S}$ this gives just the complex $\mathscr{O}_{\overline{Z}} \otimes \Omega_{Z/S} = \Omega_{\overline{Z}/S,[-]}$. A fundamental theorem of Berthelot and Grothendieck says:

Theorem 3.15. There is a canonical isomorphism

$$Ru_{X/S*} \mathscr{E} \xrightarrow{\sim} \mathscr{E}_{\overline{Z}} \otimes \Omega_{Z/S}.$$

In particular, for $\mathscr{E} = \mathscr{O}_{X/S}$ this isomorphism is compatible with the natural product structures on both sides. The proof uses a simplicial complex called the Čech-Alexander complex and the so-called crystalline Poincaré lemma. Even if globally X is not smoothable, it is locally, and using cohomological descent, we can treat this case as well.

Lemma 3.16. Let A be a ring. The de Rham complex of $A[t_1, \ldots, t_n]$ with coefficients in $A\langle t_1, \ldots, t_n \rangle$ (with the integrable connection $t_i^{[k]} \mapsto t_i^{[k-1]} dt_i$) is a resolution of A.

Now let $S = W_n$. If X has a smooth lift over W_n , crystalline cohomology of X corresponds to the de Rham cohomology of the oft.

Corollary 3.17. If Z/W_n is a smooth lift of X, then $\overline{Z} = Z$ and

$$H^*_{cris}(X/Wn) = H^*_{dR}(Z/W_n).$$

The isomorphism of Theorem 3.15 is functorial in X and compatible with base change of (S, I, γ) . In particular, let X/k and $S = W_n$ with Frobenius σ . Then the absolute Frobenius of X, $F : X \to X$ induces a σ -linear morphism in cohomology

$$\mathbf{F}: H^*(X/W_n) \to H^*(X/W_n).$$

References

- Pierre Berthelot and Arthur Ogus. Notes on crystalline cohomology. Princeton University Press and University of Tokyo Press, Princeton, 1978.
- [2] Antoine Chambert-Loir. Cohomologie cristalline: un survol. Exposition. Math., 16(4):333–382, 1998.
- [3] Luc Illusie. Complex de de Rham-Witt et cohomologie cristalline. Ann. Sci. Ec. Norm. Supér. 4^e série, 12(4):501-661, 1979.

UNIVERSITÄT REGENSBURG Fakultät für Mathematik Universitätsstraße 31 93053 Regensburg Germany (+ 49) 941-943-2664 veronika.ertl@mathematik.uni-regensburg.de http://www.mathematik.uni-regensburg.de/ertl/