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5 The big de Rham–Witt complex
In this section we will introduce the big de Rham–Witt complex following Lars Hesselholt’s paper [4]

in Section 4. The original definition is due to Hesselholt and Madsen in [5] which relies on the adjoint
functor theorem. However, there was an issue with 2-torsion. This was solved by Lars Hesselholt using
λ-ring theory.

We will see how this construction generalises the p-typical de Rham–Witt complex from Fp-algebras
to Z(p)-algebras. At the end, we want to draw the relation to K-theory.

5.1 Big Witt complexes
Let S be a truncation set (recall that a truncation set is a subset S ⊂ N such that if n ∈ S and d|n

then also d ∈ S). We will define the de Rham–Witt complex WΩS .
Let J be the set of truncation sets, partially ordered for inclusion. We consider it as a category with

a morphism from T to S if T ⊂ S.It is clear that the assignment

S 7→ S

n

is an endofunctor of J . And since S
n ⊂ S there is a morphism from S

n to S.
Recall that we defined a ring functor for each truncation set S

A 7→WS(A),

called the big Witt vectors. Now, instead of fixing S, we fix a ring A to get a contravariant functor

J → Ann
S 7→ WS(A)

from J to the category of rings, sending colimits to limits. Recall that we defined Frobenius and Ver-
schiebung for any n ∈ N

Fn : WS(A) → WS
n

(A)

Vn : WS
n

(A) → WS(A)

where the former is a ring homomorphism and the latter is additive (a morphism of abelian groups). These
deine in fact natural transformations with respect to the “variable” S.

We will now consider the category of big Witt complexes. The de Rham-Witt complex for a truncation
set S can then be defined as the initial object in this category.

Remark 5.1. This is reminiscent of the category of de Rham-V -procomplexes, whose initial object was the
p-typical de Rham–Witt complex. One difference is, that here we need from the beginning a Frobenius,
whereas in the p-typical case, the Frobenius came out of an explicit construction after having established
the existence of an initial object. It should be remarked however, that in the case of the p-typical de
Rham–Witt complex, one can also adopt a similar approach. In fact, there is a forgetful functor from the
category of de Rham-V-procomplexes to the category of Witt complexes, simply forgetting the Frobenius.
The de Rham–Witt complex can be defined as the initial object in either of them.

As mentioned above, the original definition of big Witt complexes due to Hesselholt and Madsen had
an issue with 2-torsion. The first correct 2-typical definition for a Witt complex was given by Costeanu.

Definition 5.2. A (big) Witt complex over A is a contravariant functor

S 7→ E•S

assigning to every subtruncation set of U an anti-symmetric graded ring E•S that takes colimits to limits
together with a natural ring homomorphism

ηS : WS(A)→ E0
S
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and natural maps of graded abelian groups

d : ErS → Er+1
S

Fn : ErS → ErS
n

Vn : ErS
n
→ ErS

such that

1. For x ∈ ErS , y ∈ EtS

d(x · y) = d(x) · y + (−1)rx · d(y)

d(d(x)) = d log ηS([−1]S) · d(x)

2. For m,n ∈ N

F1 = V1 = id

FmFn = Fnm

VnVm = Vmn

FnVn = n · id
FmVn = VnFm if (m,n) = 1

FnηS = ηS
n
Fn

ηSVn = VnηS
n

3. For all n ∈ N the map Fn is a ring homomorphism and Fn and Vn satisfy the projection formula
for x ∈ ErS and y ∈ EtS

n

x · Vn(y) = Vn(Fn(x)y).

4. For all n ∈ N and y ∈ ErS
n

FndVn(y) = d(y) + (n− 1)d log ηS
n

([−1]S
n

) · y.

5. For all n ∈ N and a ∈ A
FndηS([a]S) = ηS/n([a]n−1

S
n

([a]S
n

).

A map of Witt complexes is a map of graded rings f : E•S → Ẽ•S such that

fηS = η̃

fd = d̃f

fFn = F̃nf

fVn = Ṽnf.

Part of the structure of a Witt complex is a restriction map

RST : E•S → E•T

for T ⊂ S.

Lemma 5.3. Every Witt complex is determined, up to canonical isomorphism , on finite truncation sets.

Proof. For every truncation set S and r ∈ N the restriction maps define a bijection

ErS → lim←−
T⊂S, finite

ErT
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In particular, it follows from this that for a ∈W(A) written as a convergent sum a =
∑
n∈S Vn([an]S

n
)

the element dηS(a) ∈ E1
S has a similar representation

dηS(a) =
∑
n∈S

dVn([an]S
n

).

Remark 5.4. The issue with 2-torsion lies in the appearance of the element d log ηS([−1]S). This element
is annihilated by 2. Indeed, since d is a derivation

2d log ηS([−1]S) =
dηS([−1]S)

ηS [−1]S
+
dηS([−1]S)

ηS [−1]S

=
ηS([−1]S)

ηS([1])
dηS([−1]S) +

ηS([−1]S)

ηS([1])
dηS([−1]S)

=
dηS([−1]S [−1]S)

ηS([1]S)
= d log ηS([1]S) = 0

It follows that d log ηS([−1]S) is zero if 2 is invertible or i 2 = 0 in A because then [−1]S = [1]S .
Moreover, since

[−1]S = −[1]S + V2([1]S
2

)

it follows that d log ηS([−1]S) is also zero if S contains only odd integers.
We see therefore that in these cases, d is a differential and makes E•S into an anitsymmetric differential

graded ring.

Lemma 5.5. Let m,n ∈ N, and c = (m,n) the greatest common divisor, choose any pair i, j ∈ Z such
that mi+ nj = c. The following relations hold for every (big) Witt complex:

dFn = nFnd

Vnd = ndVn

FmdVn = idFm
c
Vn
c

+ jFm
c
Vn
c
d+ (c− 1)d log η S

m
([−1] S

m
) · Fm

c
V
n

c

d log ηS([−1]S) =
∑
r∈N

2r−1dV2rη S
2r

([1] S
2r

)

d log ηS([−1]S) · d log ηS([−1]S) = 0

dd log ηS([−1]S) = 0

Fn(d log ηS([−1]S)) = d log ηS
n

([−1]S
n

)

Proof. This follows mostly by explicit calculations. We will do some, and leave the rest as exercise. For
the first equation:

dFn(x) = FndVnFn(x)− (n− 1)d log η[−1] · Fn(x) this follows from (4) of the definition
= Fnd(Vnη([1]) · x)− (n− 1)d log η([−1]) · Fn(x) from the projectin formula
= Fn(dVnη([1]) · x+ Vnη([1]) · dx)− (n− 1)d log η([−1]) · Fn(x) because d is a derivation
= FndVnη([1]) · Fn(x) + FnVnη([1]) · Fnd(x)− (n− 1)d log η([−1]) · Fn(x)

= (n− 1)d log η([−1]) · Fn(x) + nFnd(x)− (n− 1)d log η([−1]) · Fn(x) from (4) and (2) of the definition
= nnd(x)

The calculation or the second equality is similar and left as an exercise.
Next we proof the last formula.

Fn(d log ηS([−1]S)) = Fn(ηS([−1]−1
S )dηS([−1]S)

= FnηS([−1]−1
S )FndηS([−1]S)

= ηS
n

([−1]−nS
n

)ηS
n

([−1]n−1)dηS
n

([−1]S
n

from (5) of the definition

= ηS
n

([−1]−1
S
n

)dηS
n

([−1]S
n

) = d log ηS
n

([−1])
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Using the three formulae already proved, we can compute the remaining equalities.

FmdVn(x) = Fm
c
FcdVcVnc (x)

= Fm
c
dVn

c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x) with property (4) from the definition

= ((
m

c
)i+ (

n

c
)j)Fm

c
dVn

c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x)

= idFm
c
Vn
c
(x) + jFm

c
Vn
c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x)

The sum formula for d log ηS([−1]S) follows by induction: We know from an exercise that [−1]S = −[1]s+
V2([1]S

2
). Use this to show that

d log ηS([−1]S) = dV2ηS
2

([1]S
2

) + V2(d log ηS
2

([−1]S
2

))

then the induction argument is obvious.
Using this, we also find

dV2(d log ηS
2

([−1]S
2

) =
∑
r∈N

2rddV2r+1η S

2r+1
([1] S

2r+1
)

=
∑
r∈N

2rd log ηS([−1]S) · dV2r+1η S

2r+1
([1] S

2r+1
) because of (1) of the definition

= 0 because d log η([−1]) is annihilated by 2

With the equality [−1]S = −[1]S + V2([1]S
2

) one can show (and the reader s encouraged to do this as
an exercise)

(d log ηS([−1]S))2 = dV2(d log ηS
2

([−1]S
2

)) · ηS([1]S − V2([1]S
2

)) = 0,

which is zero because the first factor is zero by what we just showed.
It follows from this that (dηS([−1]S))2 = 0 if spell d log out. As an exercise, use this to show the last

equality

The next proposition wil play an important role in the λ-ring approach to the construction of the big
de Rham–Witt complex.

Proposition 5.6. For every Witt complex E•S over A and every n ∈ N the diagram

Ω1
WS(A)

ηS //

Fn

��

E1
S

Fn

��
Ω1

WS
n

(A)

ηS
n // E1

S
n

commutes

Proof. Wlog we can assume that S = N, as the restriction map RN
S commutes with Frobenius and the

map η. Moreover, because a Witt complex is determined on finite truncation sets, and in particular we
have a representation for a ∈W(A)

dηS(a) =
∑
n∈S

dVn([an]S
n

)

it is enough to show for every n ∈ N, p ∈ N prime and a ∈ A

FpdVnηN([a]N) = ηNFpdVn([a]N)

in E1
N.
Case p does not devide n. Set k = (1−np−1)

p and l = np−2. Then kp + ln = 1, and c = (p, n) = 1
and Fp and Vn commute. Then by the previous lemma

FpdVnη([a]) = k · dVnFpη([a]) + l · VnFpdη([a])

= k · dVnη([a]p) + l · Vnη([a]p−1d[a])
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Now we have to compute ηFpdVn([a]). For this we need the equalities

Fpdb = bp−1db+ d

(
Fp(b)− bp

p

)
and

Vm(a)n = mn−1Vm(an)

which are left to the reader as exercise.

ηFpdVn([a]) = η(Vn([a])p−1 · dVn([a]) + d

(
FpVn[a]− (Vn[a])p

p

)
)

= η(np−2 · Vn([a]p−1) · dVn([a]) + d

(
Vn([a]p)− np−1Vn([a]p)

p

)
)

= η(l · Vn([a]p−1)dVn([a]) + kdVn([a]p))

= l · Vnη([a]p−1)dVnη([a]) + k · dVnη([a]p)

= l · Vn
(
η([a]p−1) · FndVnη([a])

)
+ k · dVnη([a]p) because of the projection formula

= l · Vnη([a]p−1d[a]) + k · dVnη([a]p) because of (4) if the definition and np−2(n− 1)d log η([−1]) = 0

Case p divides n. In this case, one treats p = 2 and p odd separately. This will b done in the exercise
session.

In order to extend this diagram – and in particular the morphism η to complexes, we have to modify
the usual complex Ω.

Remark 5.7. Note that the Frobenius Fn : Ω1
WS(A) → Ω1

WS
n

(A) is not the one following from functoriality,

but it is off by a constant factor. We will discuss the existence of such a Frobenius later on.

5.2 Two anticommutative graded algebras
The big de Rham–Witt complex is closely related to K-theory. In fact, it was introduces by Hesselholt

and Madsen in order to give an algebraic description of the equivariant homotopy groups in low degrees of
Bökstedt’s topological Hochschild spectrum of a commutative ring. This functorial algebraic description
is essential to understand algebraic K-theory by means of the cyclotomic trace map of Bökstedt–Hsiang–
Madsen. Recall that for a field an easy description of Quillen K-theory up to degree 2 is given by Milnor
K-theory. Therefore, we should not necesserily expect the big de Rham–Witt complex to be made up of
alterating forms, but rather some sort of Steinberg relation should be saitsfied. This leads to the following
definition.

Definition 5.8. Let A be a ring. The graded W(A)-algebra

Ω̂W(A) := TW(A)Ω
1
W(A)/J

is the quotient of the tensor algebra of the W(A)-module Ω1
W(A) by the graded ideal generated by the

elements of the form
da⊗ da− d log[−1]⊗ F2(da)

for a ∈W(A).

The defining relation da · da = d log[−1] · F2(da) is analogous to the Steinberg relation in Milnor
K-theory. (For a ∈ A this corresponds to

d log[a] · d log[a] = d log[−1]d log[a]

which we compare to the relation {a, a} = {−1, a} in Milnor K-theory.)
We will mention some of the important properties of this construct (and show some of them).

Lemma 5.9. The graded W(A)-algebra Ω̂W(A) is anticommutative.
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Proof. We have to show that for a, b ∈ W(A) the sum da · db+ db · da ∈ Ω̂2
W(A) equals zero. we compute

first using the defining relations in two ways:

d(a+ b) · d(a+ b) = d log[−1] · F2d(a+ b) = d log[−1] · F2da+ d log[−1] · F2db

and

d(a+ b) · d(a+ b) = da · da+ da · db+ db · da+ db · db = d log[−1] ·F2da+ da · db+ db · da+ d log[−1] ·F2db

Comparing the two expressions shows that db · da = da · db.

Proposition 5.10. There exists a unique graded derivation

d : Ω̂W(A) → Ω̂W(A)

extending the derivation d : W(A)→ Ω1
W(A) and satisfying

ddω = d log[−1] · dω.

Moreover, the element d log[−1] is a cycle.

Proof. Inductively, the map d will be given for a0, . . . , aq ∈W(A)

d(a0da1 · · · daq) = da0 · · · daq + qd log[−1] · a0da1 · · · daq

whoch means that the second summand disappears for q even and equals d log[−1] · a0da1 · · · daq for q
odd. If the so defined map is a well defined graded derivation satisfying the relation ddω = d log[−1] · dω,
it is necessarily unique. This is left to the reader as exercise.

It then follows from ddω = d log[−1] · dω that d log[−1] is in fact a cycle:

d(d log[−1]) = d([−1]d[−1])

= d[−1] · d[−1] + [−1]dd[−1]

= d log[−1] · F1d[−1] + [−1]d log[−1]d[−1]

= d log[−1] · [−1]d log[−1] + [−1]d log[−1]d[−1]

= 2(d log[−1] · [−1]d[−1]) = 0

(because Ω̂W(A) is anticommutative).

Note that in general there is no W(A)-algebra map Ω̂W(A) → ΩW(A) compatible with the derivations!

Proposition 5.11. Let A be a ring and n ∈ N. There is a unique homomorphism of graded rings

Fn : Ω̂W(A) → Ω̂W(A)

extending Fn from degree 0 and 1. Additionally

dFn = nFnd.

Proof. Similar to th definition of d, the map Fn has to be given by

Fn(a0da1 · · · daq) = Fn(a0)Fn(da1) . . . Fn(daq)

to be a graded ring homomorphism extending Fn from degrees 0 and 1, and this is unique if it is well
defined. To show this, one has to sow that

Fn(da)Fn(da) = Fn(d log[−1])Fn(F2da)

It suffices to show this for n = p prime. This is left to the reader.
The formula dFn = nFnd is already known in degree 1. Again, wlog, we can assume n = p to be prime.

To extend this to higher degrees, let a ∈W(A). Then

dFp(da) = d(ap−1da+ d

(
Fp(a)− ap

p

)
= (p− 1)ap−2dada+ d log[−1] · Fpda

which is 0 for p = 2 by the defining relations, and equal to d log[−1] ·Fpda of p is odd (because then p− 1
is even which kills the first summand). Induction give the formula for higher degrees than 2.
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So far, we hae established some important additional structures on Ω̂W(A) however, Verschiebung does
in general not extend to this W(A) algebra. We therefore define a quotient of it, where in degree 1 the
desired relation between Verschiebung, Frobenius and derivation holds.

Definition 5.12. Let A be a ring. Set

Ω̌W(A) = Ω̂W(A)/K

where K is the graded ideal generated by the elements

FpdVp(a)− da− (p− 1)d log[−1] · a

for all primes p and all a ∈W(A). This is a graded W(A)-algebra.

Note that the element FpdVp(a)− da− (p− 1)d log[−1] · a is annihilated by p (in particular, it is zero
if p is invertible in A and hence in W(A)).

In order for this definition to be useful, the maps Fn and d should descent from Ω̂W(A).

Lemma 5.13. For all n ∈ N the Frobenius map Fn : Ω̂W(A) → Ω̂W(A) induces a map of graded algebras

Fn : Ω̌W(A) → Ω̌W(A).

The graded derivation d : Ω̂W(A) → Ω̂W(A) induces a graded derivation

d : Ω̌W(A) → Ω̌W(A).

Moreover, or all n ∈ N and a ∈W(A)

FndVn(a) = da+ (n− 1)d log[−1] · a

holds in Ω̌1
W(A).

Proof. The calculations to do here are not difficult, and in general obvious, but a bit tedious.

So far, the definitions hold for the big Witt vectors, meaning that S = N. But using restriction, the
other cases are covered as well.

Definition 5.14. Let A be a ring, S ⊂ N a truncation set and IS(A) ⊂W(A) the kernel of RN
S : W(A)→

WS(A). The maps

Ω̂W(A)
RN
S−−→ Ω̂WS(A) and Ω̌W(A)

RN
S−−→ Ω̌WS(A)

are the quotient maps that annihilate the respective graded ideals generated by IS(A) and dIS(A).

Lemma 5.15. The derivation, restriction and Frobenius defined before induce maps

d : Ω̂WS(A) → Ω̂WS(A) d : Ω̌WS(A) → Ω̌WS(A)

RTS : Ω̂WS(A) → Ω̂WT (A) RTS : Ω̌WS(A) → Ω̌WT (A)

Fn : Ω̂WS(A) → Ω̂WS
n

(A) Fn : Ω̌WS(A) → Ω̌WS
n

(A)

The maps d are graded derivations, the maps RTS and Fn are graded ring homomorphisms; RTS and d
commute and dFn = nFnd.

Proof. For the first part, there are a few equations to check. The second part is clear.

Now we want to extend the commuting diagram for a Witt complex ES

Ω1
WS(A)

ηS //

Fn

��

E1
S

Fn

��
Ω1

WS
n

(A)

ηS
n // E1

S
n

to Ω̌WS(A).
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Proposition 5.16. Let ES be a Witt complex over the ring A. There is a unique natural homomorphism
of graded rings

ηS : Ω̌WS(A) → ES

that extends the natural ring homomorphism ηS : WS(A) → E0
S and commutes with derivations. For

m ∈ N the diagram

Ω̌WS(A)
ηS //

Fm

��

ES

Fm

��
Ω̌W S

m
(A)

η S
m // E S

m

commutes.

Proof. As before, there is no other way the map ηS can be given than by

ηS(a0da1 · · · daq) = ηS(a0)dηS(a1) · · · dηS(aq)

To show that it is well defined, we note first from the proposition in degree 1 that

F2dηN(a) = ηNF2d(a) = ηN

(
ada+ d

(
F2(a)− a2

2

))
= ηN(a)dηN(a) + dηN

(
F2(a)− a2

2

)
Now we apply d to this equation, so that the left hand side becomes

dF2dηN(a) = 2F2ddηN(a) = 0

and the right hand side reads

dηN(a)dηN(a)+d log ηN([−1]N)·(ηN(a)dηN(a)+dηN

(
F2(a)− a2

2

)
) = dηN(a)dηN(a)d log ηN([−1]N)·F2dηN(a)

and together the equation
0 = dηN(a)dηN(a)d log ηN([−1]N) · F2dηN(a)

which is the defining relation of Ω̂WS(A). Thus the above defined map is well defined on Ω̂WS(A) → ES .
Moreover this map factors through Ω̌WS(A) which is the quotient of Ω̂WS(A) by the ideal generated by
FpdVp(a)− da− (p− 1)d log[−1] · a because o point (4) of the definition of Witt complexes. Finally it is
clear from the definition of ηS above, and from the equivalent result in degree 1, that the desired diagram
commutes.

The existence of the Forbenius used here follows quite explicitely from the theory λ-rings, and modules
and derivations over those, which will be the subject of the following section.

5.3 Modules and derivations over λ-rings
We already mentioned the following fact, when we introduced the big Witt vectors. For simplicity,

denote W(A) := WN(A) for a ring A as above.

Proposition 5.17. There exists a unique natural ring homomorphism

∆ = ∆A : W(A)→W(W(A))

such that for any n ∈ N
wn ◦∆ = Fn : W(A)→W(A).

In addition, the following diagrams, with εB = w1 : W(B)→ B for a ring B, commute

W(A) W(W(A))
εW(A)oo W(εA) // W(A)

W(A)

∆A

OO
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and

W(W(W(A))) W(W(A))
∆W(A)oo

W(W(A))

W(∆A)

OO

W(A)

∆A

OO

∆Aoo

Proof. To prove existence, it is enough to do that in the universal case A = Z[a1, a2, . . .] and a =
(a1, a2, . . .) there is an element ∆A(a) ∈W(W(A)) with image under the ghost map

w : W(W(A))→W(A)N

is (Fn(a))n∈N. Since w in this universal case is injective, the element ∆A(a) is unique - if it exists.
By Dworks Lemma and the definition of Fp, (Fn(a)) is in the image of the ghost map, iff for p ∈ N

prime and n ∈ pN
Fn(a) ≡ Fp(Fn

p
) mod pνp(n) W(A),

which follows from Fn([a]S) = [a]nS
n

.
Thus existence and uniqueness of the map ∆. One checks that the diagrams commute by computing

them in ghost coordinates.

Note that the map ∆n : W(A) → W(A) given by the nth component of ∆ is in general not a ring
homomorphism.

Moreover, for a ∈ A: ∆([a]) = [[a]].
This natural transformation is called the universal λ-operation. With this, Grothendieck’s definition

of λ-rings can be stated as follows.

Definition 5.18. A λ-ring is a pair (A, λ), where A is a ring, and λ : A→W(A) such that the diagrams

A W(A)
εAoo

A

λ

OO

and
W(W(A)) W(A)

∆Aoo

W(A)

W(λ)

OO

A
λoo

λ

OO

commute. A morphism of λ-rings f : (A, λA)→ (B, λB) is a ring homomorphism f : A→ B such that

λB ◦ f = W(f) ◦ λA.

For a λ-ring (A, λ) we denote by λn : A→ A the nth Witt component of λ(a). The so defined map is
in general neither additive nor multiplicative.

Definition 5.19. Let (A, λ) be a λ-ring. The associated nth Adams operation is the composite ring
homomorphisms

ψn = wn ◦ λ : A→ A.

We mention some results:

Lemma 5.20. Let (A, λ) be a λ-ring. The associated Adams operations satisfy:
1. the map ψ1 = idA

2. for all positive integers m,n ∈ N: ψm ◦ ψn = ψmn

3. for a prime p ∈ N, a ∈ A: ψp(a) ≡ ap mod pA
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Proof. The properties (1) and (3) follow directly from the definition. (2) follows from

ψm ◦ ψn = wm ◦ λ ◦ wn ◦ λ
= wm ◦ wn ◦W(λ) ◦ λ from naturality of wn
= wm ◦ wn ◦∆ ◦ λ by definition of a λ-ring
= Wm ◦ Fn ◦ λ by definition of ∆

= wmn ◦ λ = ψmn by definition of Fn

Proposition 5.21 (Wilkerson). If A is a flat ring over Z, with a family of ring endomorphisms ψn
satisfying properties (1)-(3) from the previous lemma. Then there is a unique λ-ring structure on A for
which the ψn are the associated Adams operations.

Proof. This can be found in [8].

Lastly, we cite a result obtained independently by Borger [2, 3] and van der Kallen [7].

Theorem 5.22. Let f : A→ B be étale, S a finite truncation set, n ∈ N. Then the induced morphism

WS(f) : WS(A)→WS(B)

is étale and the diagram

WS(A)

Fn

��

WS(f) // WS(B)

Fn

��
WS

n
(A)

WS
n

(f)
// WS

n
(B)

is cocartesian.

The definition of modules over λ-rings used by Hesselholt in [4, Sec. 2] is based on the following
definition employed by Beck [1] in his thesis.

Let C be a category with finite limits and X ∈ C. Then the category of X-modules (C/X)ab is the
category of abelian group objects in C overX. The derivations fromX to theX-module (Y/X,+Y , 0Y ,−Y )
is the set

Der(X, (Y/X,+Y , 0Y ,−Y )) = HomC/X(X/X, Y/X).

We will use this as a working definition.
Remark 5.23. A few reminders about category theory.

In general an adjunction from a category C to a category D is a quadruple (F,G, ε, η) where F : C → D
and G : D → C are functors, and ε : F ◦ G ⇒ id and η : G ◦ F ⇒ id are natural transformations, such
that

F
F◦η +3 F ◦G ◦ F ε◦F +3 F and G

η◦G +3 G ◦ F ◦G G◦ε +3 G

are equal to the respective identity natural transformation. This is often refer to as triangle identities.
The transformations ε and η are called counit and unit of the adjunction. The adjunction is calle adjoint
equivalence, if they are both isomorphisms.

A functor G : D → C admits a left adjoint if an adjunction (F,G, ε, η) exists. F is then called a left
adjoint of R. If a left adjoint exists, then it is unique up to unique isomorphism. Similar for right adjoints.

Let A be the category of (commutative) rings. For A ∈ A we define an adjunction (F,G, ε, η) from
the category (A /A)ab of A-modules as defined above (abelian group objects in the category A /A), to
the category M (A) of A-modules in the usual sense:

Let f : B → A be in A /A and the abelian group structure given by

B ×f B
+B //

��

B

f

��
A A

A
0B // B

f

��
A A

B
−B //

f

��

B

f

��
A A
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Then F associates to the abelian group object (f,+B , 0B ,−B) the A-module M = Ker(f) with the
A-module structure

a.x = 0B(a)x.

On the other hand, if M is an A-module, let AnM be the ring given by A⊕M with multiplication

(a, x).(a′, x′) = (aa′, ax′ + a′x)

and let G(M) be the group object (f,+, 0,−) with f : A nM → A the projection, (a, x) + (a, x′) =
(a, x+ x′), 0(a) = (a, 0) and −(a, x) = (a,−x). We define ε : G ◦ F ⇒ id and η : F ◦G⇒ id by

ε(a, x) = 0B(a) + x and η(x) = (0, x)

Lemma 5.24. If A is a ring, then the quadruple (F,G, η, ε) is an adjoint equivalence of categories from
(A /A)ab to M (A).

Proof. This is a result due to Beck and will be done in the exercise session.

We will look at the analogous statement for λ-rings.
Before, we will study the Witt vectors of the ring AnM defined earlier. Recall that the polynomials

sn(a, b), pn(a, b), in(a) which define the sum product and inverse in the ring of (big) Witt vectors have
constant term 0. Thus the (big) Witt vectors can be defined for non-unital rings as well. Moreover, by
induction one sees that they are congruent to

sn(a, b) ≡ an + bn

pn(a, b) ≡ anbn

in(a) ≡ −an

modulo higher degrees. If we consider the module M as non-unital ring with zero multiplication, then its
Witt ring WS(M) has also zero multiplication, and has underlying additive group MS with component-
wise addition.

Similarly, one shows, that the polynomials defining the Frobenius and the universal λ-operation have
constant term zero and are congruent to nanm for Fn and anm for ∆n resepectively, so that

Fn : WS(M)→WS
n

(M), (xm)m∈S 7→ (nxnm)m∈Sn
∆M : W(M)→W(W(M)), (xm)m∈N 7→ ((xme)e∈N)m∈N

Lemma 5.25. Let S be a truncation set, A a ring and M an A-module. Assume that WS(M) is endowed
witht the WS(A)-module structure such that for a ∈ WS(A) and x ∈ WS(M), ax ∈ WS(M) has Witt
components (ax)n = wn(a)xn. Then the canonical inclusions i1 : A→ AnM and i2 : M → AnM induce
a ring isomorphism

i1∗ + i2∗ : WS(A) nWS(M)→WS(AnM).

Proof. Consider the diagram of rings

0 // M
i2 // AnM

p1 // A
i1
oo // 0

Although not a priori exact as diagram of rings, it is split exact seen as diagram of additive groups.
Likewise, the induced diagram of rings

0 // WS(M)
i2∗ // WS(AnM)

p1∗ //WS(A)
i1∗
oo // 0

has an underlying diagram of additive groups which is split exact. It follows that the map of the statement
is an isomorphism of additive groups. Moreover, it is a morphism of rings, if WS(M) is given the WS(A)-
module structure such that i2∗(ax) = i1∗(a)i2∗(x) for all a ∈WS(A) and x ∈WS(M). It remains to show
that ax equals the Witt vector y with components wn(a)xn. Wlog, we may assume that A and M are
torsion free (otherwise, we can find a surjection from a torsion free ring). In this case, the ghost map
is injective, so that we can use ghost components to show the claim. In other words, for each n ∈ N
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we have to show wn(ax) = wn(y) in WS(M), which means we have to show i2(wn(ax)) = i2(wn(y)) in
WS(AnM). Bearing in mind that wn is a ring homomorphism we compute

i2(wn(ax)) = wn(i2∗(ax))

= wn(i1∗(a)i2∗(x))

= wn(i1∗(a))wn(i2∗(x))

= i1(wn(a))i2(wn(x))

= i2(wn(a)wn(x))

= i2(nwn(a)xn)

= i2(nyn) = i2(wn(y))

which proves the claim.

To describe the elements of WS(AnM) we prove the following:

Lemma 5.26. Let A,M,S be as above, a ∈ WS(A) and x ∈ WS(M). Then the Witt components
bn = an.yn ∈ AnM of b = i1∗(a) + i2∗(x) ∈WS(AnM) satisfy∑

e|n

a
n
e−1
e ye = xn.

Proof. This is an exercise.

Inspired by this, we now consider for a ring A and an A-module M and truncation set S the WS(A)-
module WS(M) to be the set MS with component wise addition and with scalar multiplication defined
for a ∈WS(A), x ∈WS(M) by

(ax)n = ψA,n(a)xn

where ψA,n is the nth Adams operation of A.

Remark 5.27. In the case, when M is the A-module A itself, then the WS(A)-modules WS(M) defined as
above is in general not the same as the WS(A)-module WS(A) via multiplication.

Now back to our goal to prove a λ-ring equivalent of Lemma 5.24. For this, we first give a straight
forward definition of modules in this context.

Definition 5.28. Let (A, λA) be a λ-ring. An (A, λA)-module is a pair (M,λM )where M is an A-module
and

λM :→W(M)

a λA-linear map such that the diagrams

M W(M)
εMoo

M

λM

OO
and W(W(M)) W(M)

∆Moo

W(M)

W(λM )

OO

M
λMoo

λM

OO

commute.
A morphism h : (M,λM )→ (N,λN ) of (A, λA)-modules is an A-linear map h : M → N such that

λN ◦ h = W(h) ◦ λM .

Denote by M (A, λA) the category of (A, λA)-modules.

Example 5.29. For a λ-ring (A, λA) one can define an (A, λA)-module by setting (M,λM ) = (A,ψA).
Note however, that (A, λA) itself is in general not an (A, λA)-module.

As we have seen for a ring A (W(A),∆A) is a λ-ring. In fact, the functor, R : A 7→ (W(A),∆A) is
right adjoint to the forgetful functor

U : A λ → A
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(with unit given by λ : (A, λA)→ (W(A),∆A) and counit by εA : W(A)→ A).
We also have an adjunction

A λ /(A, λA)
U(A,λA) // A /A
R(A,λA)

oo

where the forgetfulfunctor U(A,λA) takes f : (B, λB) → (A, λA) to f : B → A and its right adjoint takes
f : B → A to the pullback p2 : (C, λC)→ (A, λA) with

(C, λC)
p1 //

p2

��

(W(B),∆B)

W(f)

��
(A, λA)

λA

// (W(A),∆A)

Since both functors preserve limits, as the functors above, they induce an adjunction on the subcategory
of abelian group objects

(A λ /(A, λA))ab
// (A /A)aboo

which correspond to the adjunction

M (A, λA)
U ′ //M (A)
R′

oo

(M,λM ) � // M

(λA∗(W(N)),∆N ) N
�oo

The notation λA∗(W(N)) means the W(A)-modules W(N) considered as an A module via λA.
We now come to the analogue of Beck’s result.

Proposition 5.30. Let (A, λA) be a λ-ring. There exist a unique adjunction (up to unique isomorphism)

(Fλ, Gλ, ελ, ηλ) : (A λ /(A, λA))ab →M (A, λA)

such that in the diagram below the square of left adjoint functors commutes

(A /A)ab
F //

R(A,λA)

��

M (A)
G

oo

R′

��
(A λ /(A, λA))ab

U(A,λA)

OO

Fλ //M (A, λA)
Gλ
oo

U ′

OO

Moreover, this defines an equivalence of categories.

Proof. Recall that F was defined by associating to an abelian group object (f : B → A,+B , 0b,−B) the
A-moduleM = ker f with the module structure aẏ = 0B(a)x. And G was defined by sending an A-module
M to the group object (f : AnM → A,+, 0,−).

Now let (f : (B, λB) → (A, λA),+B , 0B ,−B) ∈ (A λ /(A, λA))ab, then Fλ(f,+B , 0B ,−B) = (M,λM )
with M = F (f) and λM : M →W(M) induced by functoriality on the kernels of the vertical maps in

B
λB //

f

��

W(B)

W(f)

��
A

λA // W(A)

and it is clear that U ′ ◦ Fλ = F ◦ U(A,λA).
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Conversely, for an (A, λA)-module (M,λM ), let Gλ(M,λM ) be G(M) of above (with underlying ring
B = AnM), with the lambda-ring structure λB : B →W(B) given by

AnM
λA⊕λM−−−−−→W(A) nW(M)

i1+i2−−−→W(AnM)

One then has to show that Gλ is well-defined, for which one needs the three following steps:
1. (B, λB) is a λ-ring.
2. The canonical projection f : (B, λB)→ (A, λA) is a λ-ring morphism.
3. The abelian group object structure maps +B , 0B and −B on f : B → A are λ-ring morphisms.

The proof of these tree statements involve the techniques that we discussed earlier on Witt vectors of
modules. The reader is encouraged to do this. Note also, that by construction

U(A,λA) ◦Gλ = G ◦ U ′.

Lastly, one has to show that Fλ and Gλ form an adjoint pair compatible with the adjoint pair (F,G),
meaning there are unique natural isomorphisms (transformations)

Gλ ◦ Fλ ελ +3 id and id
ηλ +3 Fλ ◦Gλ

such that
U(A,λA)(ε

λ) = ε ◦ U(A,λA) and U ′(ηλ) = η ◦ U ′

This means commutativity of the following two diagrams where M is a λ-module, B is the λ-ring AnM
as above, i : M → B is a chosen embedding of the kernel of f : B → A into B, of which the first one
corresponds to Gλ and the second one corresponds to Fλ.

M
λM //

i2

��

W(M)

i2

��

W(M)

i2∗

��
AnM

λA⊕λM // W(A) nW(M)
i1∗+i2∗ // W(An)

AnM
λA⊕λM //

0B+i

��

W(A) nW(M)

0B∗+i∗

��

i1∗+i2∗ // W(An)

(0B+i)∗

��
B

λB // W(B) W(B)

In both diagrams, the left-hand squares commute by naturality and the right-hand squares by the universal
property of the direct sum.

It will be advantageous to be able to work in either category.
We will now define derivations on M (A, λA) and bring them together with Beck’s more general defi-

nition.

Definition 5.31. Let (A, λA) be a λ-ring, and (M,λM ) an (A, λA)-module. A derivation

D : (A, λA)→ (M,λM )

is a map of sets such that
1. Additivity: for a, b ∈ A, D(a+ b) = D(a) +D(b)

2. Leibniz rule: for a, b ∈ A, D(ab) = aD(b) + bD(a)

3. λ-semilinearity: for a ∈ A and n ∈ N, λM,n(D(a)) =
∑
e|n λA,e(a)

n
e−1D(λA,e(a))

The set of derivations is denoted by Der((A, λA), (M,λM )).

Under the equivalence of Prop. 5.30 we have:
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Proposition 5.32. Let (A, λA) be a λ-ring, (M,λM ) and (A, λA)-module, and f : (A nM,λAnM ) →
(A, λA) the canonical projection. Then there is a bijection

Der((A, λA), (M,λM )) → HomA λ /(A,λA)(id(A,λA), f)

D 7→ (idA, D)

Proof. Without λ it is easily verified, that the map from Der(A,M) to HomA /A(idA, f) taking D to
(idA, D) is a bijection.

By abuse of notation, we also write (idA, D) : A→ AnM without the underlying maps. In order to
show the claim, we have to show that D is a λ-derivation – meaning, we have to check λ-linearity – iff
(idA, D) : A→ AnM is a λ-ring homomorphism, meaning the diagram

A
λA //

(idA,D)

��

W(A)

(idA,D)∗

��
AnM

λA⊕λM // W(A) nW(M)
i1∗+i2∗ // W(AnM)

commutes. To see this, let a ∈ A: applying first (idA, D), then λA ⊕ λM

a 7→ (a,Da) 7→ (λA(a), λM (Da))

whose nth Witt component is (λA,n(a), λM,n(Da)).
On the other hand, applying first λA and then (idA, D)∗ leads to an element with eth Witt component

(λA,e(a), DλM,e(a)). Because of Lem. 5.25 and the formula in Lem. 5.26 shows that the diagram commutes
if and only if D is λ-linear.

Recall that classically, K’́ahler differentials over a ring A are universal among the derivations over A,
in the sense, that for a derivation D : A → M there is a unique map of A-modules f : Ω1

A → M such
that D = f ◦ d. Another way to express this is by saying the module of K’́hler differentials Ω1

A over A
corepresents the functor that assigns to an A-module M the set of derivations Der(A,M). In the λ-world
we have the following analogue.

Lemma 5.33. Let (A, λA) be a λ-ring. There exists a derivation

(A, λA)
d−→ (Ω1

(A,λA), λΩ1
(A,λA)

)

which corepresents the functor that to an (A, λA)-module (M,λM ) assignes the set of derivations Der ((A, λA), (M,λM )).

Proof. The target of the map: consider the free (A, λA)-module (F, λF ) generated by the symbols {d(a)
∣∣ a ∈

A}, and quotient out the relations that we would like to have: d(a + b) − d(a) − d(b), d(ab) − bd(a) −
ad(b) and λF,n(da) −

∑
e|n λA,e(a)

n
e−1dλA,e(a) for a, b ∈ A, n ∈ N. The resulting object is denoted

(Ω1
(A,λA), λΩ1

(A,λA)
).

The map: d takes a to the class of d(a) under these relations.
By construction, for a λ-derivation D : (A, λA) → (M,λM ) there is a unique well-defined map of

λ-modules
f : (Ω1

(A,λA), λΩ1
(A,λA)

→ (M,λM )

such that D = f ◦ d.

The main theorem of this section identifies Ω1
A and Ω1

(A,λA) as A-modules via the canonical morphism
given by the universal property of K’́ahler differentials.

Theorem 5.34. For every λ-ring (A, λA) the canonical map

Ω1
A → Ω1

(A,λA)

is an A-module isomorphism.
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Proof. Let

(A /A)ab
i // (A /A)

(−)ab

oo and (A λ /(A, λA))ab
iλ // (A λ /(A, λA))

(−)ab

oo

be the forgetful functors (forgetting the abelian groups structurem together with their left adjoints. They
fit into the following diagram

A /A
(−)ab //

R(A,λA)

��

(A /A)ab
F //

R(A,λA)

��

i
oo M (A)

G
oo

R′

��
A λ /(A, λA)

UA,λA

OO

(−)ab// (A λ /(A, λA))ab
iλ

oo

U(A,λA)

OO

Fλ //M (A, λA)

U ′

OO

Gλ
oo

where in the right hand square the vertical funtors are adjoint equivalences, as we have seen. (This means
that the composition of the top (resp. bottom) adjunctions of the whole square determine the top (resp.
bottom) adjunctions of the left-hand square.)

Let K = i◦G. Then we define a functor H, such that it gives rise to an adjunction (H,K, ε, η). Recall
what K does: it takes an A-module M to f : A nM → A (and the forgets +AnM , 0AnM and −AnM ).
Let H be the functor that assigns to a ring f : B → A over A the A-module A×B Ω1

B .
Similarly in the λ-world, we define a functor Hλ such that the composition Kλ = iλ ◦Gλ is its right

adjoint: recall thatKλ takes an (A, λA)-module (M,λM ) to the canonical projection f : (AnM,λAnM )→
(A, λA) (and then forgets the abelian group object structure). Define Hλ to be the functor assigning to
f : (B, λB)→ (A, λA) the (A, λA)-module (A, λA)⊗(B,λB) Ω1

(b,λB).
Thus we get a diagram of adjunctions

A /A
H //

R(A,λA)

��

M (A)
K

oo

R′

��
A λ /(A, λA)

UA,λA

OO

Hλ //M (A, λA)

U ′

OO

Kλ

oo

with the middle column “missing” from the above diagram. And this shows that up to unique natural
isomorphism the composition of functors R(A,λA) ◦ K coincides with the composition Kλ ◦ R. And by
uniqueness of the left adjoint, the same holds for the compositions H ◦ U(A,λA) and U ′ ◦Hλ.

It follows that the canonical natural transformation

A⊗B Ω1
B → U ′

(
(A, λA)⊗(B,λB) Ω1

(B,λB)

)
is an isomorphism, and gives the desired result for (B, λB) = (A, λA).

This means, that for a λ-ring (A, λA) the A-module of usual differentials Ω1
A the richer structure of

an (A, λA)-module. In the case of the λ-ring (W(A),∆A) this implies the existence of natural Fn-linear
maps, that are also denoted Fn : Ω1

W(A) → Ω1
W(A).

Theorem 5.35. Let A be a ring. There are natural Fn-linear maps Fn : Ω1
W(A) → Ω1

W(A) such that

Fn(da) =
∑
e|n

∆A,e(a)
n
e−1d∆A,e(a).

Moreover,
1. for m,n ∈ N: FmFn = Fnm and F1 = id,
2. for n ∈ N and a ∈W(A): dFn(a) = nFn(da),
3. for n ∈ N and a ∈ A: Fn(d[a]) = [a]n−1d[a].

Proof. We apply the previous theorem to the λ-ring W(A),∆A) to get a canonical isomorphism

Ω1
W(A)

∼−→ Ω1
(ΩA,∆A).

Universität Regensburg Fakultät für Mathematik



Veronika Ertl De Rham–Witt Complex Page 17 of 22

The crucial point is that the target of this map is a (W(A),∆A)-module, which comes together with a
map λ(ΩW(A),∆A

). We set
Fn = λ(ΩW(A),∆A

),n : Ω1
(W(A),∆A) → Ω1

(W(A),∆A)

as the nth Witt component of this map. It is obviously Fn = wn ◦ ∆A-linear and by the definition of a
λ-derivation satisfies the given formula.

The identities follow with simple calculations.

5.4 The big de Rham–Witt complex
The theme of the last section of this series is the existence of an initial object in the category of (big)

Witt complexes — the big de Rham–Witt complex.

Theorem 5.36. Let A be a (commutative unital) ring and S a truncation set. There is an initial Witt
complex

S 7→WΩS(A)

over the ring A. Moreover, for each degree q, the canonical map

Ω̌qWS(A)

ηS−→WS ΩqA

is surjective and we have commutative diagrams

Ω̌qWS(A)

ηS //

RST

��

WS ΩqA

RST

��

Ω̌qWS(A)

ηS //

d

��

WS ΩqA

d

��

Ω̌qWS(A)

ηS //

Fm

��

WS ΩqA

Fm

��
Ω̌qWT (A)

ηT // WT ΩqA Ω̌q+1
WS(A)

ηS // WS Ωq+1
A Ω̌qW S

m
(A)

η S
m // W S

m
ΩqA

The maps on the left hand side in the diagrams from this statement have been defined in Lemma 5.15.
It stands to reason to define the complex WS ΩA as quotient of Ω̌WS(A) in a way to make the diagrams

commute. Furthermore, one defines Verschiebung as maps of graded abelian groups WS
n

ΩA
Vn−−→ WS ΩA

such that

WS
n

(A)
ηS
n //

Vn

��

WS
n

Ω0
A

Vn

��
WS(A)

ηS // WS Ω0
A

WS
n

ΩA

R
S
n
T
n��

Vn // WS ΩA

RST

��
WT

n
ΩA

Vn //WT ΩA

WS
n

ΩA ⊗WS ΩA

id⊗Fn

uu

Vn⊗id

))
WS

n
ΩA ⊗WS

n
ΩA

µ

��

WS ΩA ⊗WS ΩA

µ

��
WS

n
ΩA

Vn // WS ΩA

commute.
The definition of WS ΩA and Vn will be done, as S ranges over all finite truncation sets (which we

have seen to suffice), T ⊂ S over all subtruncation sets, and n over all natural numbers, by induction on
the cardinality of S. Then one can show that the object obtained together with this structure actually is
a big Witt complex and moreover that it is the initial one.
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Proof. To start the induction, let S = ∅, and define W∅ΩA to be the terminal graded ring which is zero
in al degrees, and let

η∅ : Ω̌W∅(A) →W∅ ΩA

to be the unique map of graded rings. The maps R∅∅, Fn, d, and Vn are trivial as well.
Now let S be a finite truncation set, and assume that for all proper truncation sets T ( S, and U ⊂ T and

all n ∈ N the maps ηT , RTU ,Fn, d, and Vn have been defined such that the desired properties are satisfied.
Let NS be the graded ideal of Ω̌WS(A) generated by all sums of the form

∑
α

Vn(xα)dy1,α · · · dyq,α and d

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
,

where xα ∈WS
n

(A) and y1,α, . . . yq,α ∈WS(A) and n > 2, q > 1 such that the projection of the sum

ηS
n

(∑
α

xαFndy1,α · · · dyq,α

)

to WS
n

ΩqA is zero. Let
WS ΩA = Ω̌WS(A)/NS

be the quotient, and ηS the quotient map.
Next we define Vn : WS

n
ΩA →WS ΩA, which has to “commute” with ηS and ηS

n
as map of graded abelian

groups by
VnηS

n
(xFndy1 · · ·Fndyq) = ηS(Vn(x)dy1 · · · dyq)

which defines Vn uniquely in that every element ofWS
n

ΩqA can be written as a sum of elements ηS
n

(XFndy1 · · · dyq)
with x ∈WS

n
(A) and yi ∈WS(A).

We come to the existence and uniqueness of the maps RST , d and Fn, which make the diagrams in the

theorem commute. Note that once existence is established, uniqueness is clear due to the commutativity
of these diagrams. For the existence, we have to show that applying the left hand vertical maps RST , d and
Fn to the q-graded piece of the kernel Nq

S of Ω̌qWS(A) is trivial in the quotient. More precisely, we have to
show

ηT (RST (Nq
S)) = 0

ηS(d(Nq
S)) = 0

η S
m

(Fm(Nq
S)) = 0

One has to use the properties established for the maps on Ω̌. Let for n ∈ N

ω =
∑
α

Vn(Xα)dy1,α · · · dyq,α ∈ Ω̌qWS(A)

such that 0 = ηS
n

(
∑
α xαFndy1,α . . . Fndyq,α) ∈WS

n
ΩqA (this defines a general element of the kernel) and

show that

ηTR
T
S (ω) = 0

ηS(ddω) = 0

η S
m
Fm(ω) = 0

η S
m
Fm(dω) = 0

Rewriting RTS (ω), to show that

ηTR
T
S (ω) = ηT

(∑
α

VnR
S
n
S
n

dRST (y1,α) · · · dRST (yq,α)

)
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it is enough to show that the following element is zero:

ηT
n

(∑
α

R
S
n
T
n

(xα)FndR
S
T (y1,α) · · ·FndRST (yq,α)

)
= ηT

n
R
S
n
T
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)

= R
S
n
T
n

ηS
n

(∑
α

xαFndy1,α · · · dyq,α

)
by induction hypothesis

= 0 by induction hypothesis

The proofs of the remaining equalities will be left as an exercise.
To complete the definition/construction ofWS ΩA together with the maps ηS , RST , d, Fn and Vn, it remains

to verify that the three diagrams (two squares and one pentagon) commute.
The diagram

WS
n

(A)
ηS
n //

Vn

��

WS
n

Ω0
A

Vn

��
WS(A)

ηS // WS Ω0
A

commutes by definition of the Verschiebung.
The diagram

WS
n

ΩA

R
S
n
T
n��

Vn // WS ΩA

RST

��
WT

n
ΩA

Vn //WT ΩA

commutes by the following calculation, taking into account that every element of WS
n
can be written as

a sum of elements of the form ηS
n

(xFndy1 · · · dyq) with x ∈WS
n

(A) and yi ∈WS(A):

RSTVnηS
n

(xFndy1 · · · dyq) = RST ηS(Vn(x)dy1 · · · dyq) by definition of Vn

= ηTR
S
T (Vn(x)dy1 · · · dyq) by definition of RST

= ηT (VnR
S
n
T
n

(x)dRST (y1) · · · dRST (yq)) by induction hypothesis

= VnηT
n

(R
S
n
T
n

(x)FndR
S
T (y1) · · ·FndRST (yq)) by definition of Vn

= VnR
S
n
T
n

ηS
n

(xFndy1 · · · dyq) by definition of R
S
n
T
n

The commutativity of the pentagon is discussed in the exercises.
The next point is to check that what we just defined is indeed a Witt complex over A.As a reminder, for

this is needed: V1 = id, VnVm = Vnm, FnVm = n id and FmVn = VnFm if (nm) = 1. The first is clear by
definition. For the second identity compute

Vmnη S
mn

(xFmndy1 · · ·Fmndyq) = ηS(Vmn(x)dy1 · · · dyq) by definition of Vmn
= ηS(Vm(Vn(x))dy1 · · · dyq) by the desired equation on W(A)

= Vmη S
m

(Vn(x)Fmdy1 · · ·Fmdyq) by definition of Vm
= Vm(Vn(η S

mn
(x))FmdηS(y1) · · ·FmdηS(yq)) by existence of Fm with η S

m
Fm = FmηS

= Vm(Vn(η S
mn

(x)FmndηS(y1) · · ·FmndηS(yq))) by inductive hypothesis

= Vm(Vnη S
mn

(xFmndy1 · · ·Fmndyq)) by definition of Fmn

Universität Regensburg Fakultät für Mathematik



Veronika Ertl De Rham–Witt Complex Page 20 of 22

Similarly for the third identity:

FnVnηS
n

(xFndy1 · · · dyq) = FnηS(Vn(x)dy1 · · · dyq) by definition of Vn
= ηS

n
Fn(Vn(x)dy1 · · · dyq) by definition of Fn

= nηS
n

(xFndy1 · · · dyq) by induction

The fourth identity will be discussed in the exercises.
Finally, we have to show that the complex which we constructed is initial among Witt complexes over A.

To this end, let E•S be a Witt complex over A together with the map

ηES : Ω̌WS(A) → E•S

which was constructed earlier. One has to show that this map factors through WS ΩA

Ω̌WS(A)

ηES //

ηS
%%

E•S

WS ΩA

;;

Since ηS is by construction surjective, the map fS has to be unique if it exists. To show existence, by
the same reasoning as before, we may assume that the truncation set S is finite, and proceed again by
induction on the cardinality of S, the case S = ∅ being easy, as it is simply the identity. Thus let S
be a finite truncation set, and assume that for every proper subtruncation set T ( S, the factorisation
ηET = fT ηT exists. The proceeding is now similar to the existence of the maps RST , Fn, d, as we have to
show again, that for any n ∈ N, xα ∈WS

n
(A) and y1,α, . . . , yy,α ∈WS(A) such that

ηS
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)
∈WS

n
ΩqA

vanishes, the element

ηES

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
∈ EqS

vanishes as well.
Using that E•S is a Witt complex, we find (with some intermediate steps that are omitted) with the

inductive hypothesis that

ηES

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
= VnfS

n
ηS
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)

which vanishes by induction.
This is the induction step to get the factorisation for S.
FInally, one has to show that the so obtained maps fS for varying S constitute a map of Witt complexes,

which means that it commutes with the respective d’s, Fn’s and Vn’s. We have seen in Corollary 5.16 that
the maps ηE commute with Frobenius, more precisely for m ∈ N

Fm ◦ ηES = η S
m
◦ Fm

and by construction, the same holds true for the maps η in WΩ. It follows that

Fm ◦ fS = f S
m
◦ Fm

for all m ∈ N. Likewise, since η and ηE commute with the differentials d, the maps fS are bound to do
so as well. Finally, it remains to show that for every truncation set S and for every positive integer m,
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one has fS ◦ Vm = Vm ◦ f S
m
: again by the reasoning that every element of W S

m
can be written as a sum

of elements of the form η S
m

(xFndy1 · · · dyq) with x ∈W S
m

(A) and yi ∈WS(A):

fSVmη S
m

(x · Fmdy1 · · ·Fmdyq) = fSηS(Vm(x) · dy1 · · · dyq) by definition of Vn

= ηES (Vm(x) · dy1 · · · dyq) by factorisation of ηE

= ηES (Vm(x)) · ηES (dy1 · dyq) by multiplicativity of ηE

= Vm(ηES
m

(x)) · ηES (dy1 · · · dyq) since Vm and ηE commute in degree zero

= Vm(ηES
m

(x) · FmηES (dy1 · · · dym)) by definition

= Vm(ηES
m

(x) · ηES
m
Fm(dy1 · · · dym)) since ηE and Fm commute

= Vm(ηES
m

(x · Fmdy1 · · · dym) by multiplicativity of ηE

= Vmf S
m
η S
m

(x · Fmdy1 · · ·Fmdyq) by factorisation of ηE

This completes the proof of the theorem.

Definition 5.37. The initial Witt complex WS ΩA is called the big de Rham–Witt complex for the
truncation set S of A. If S = N, it is denotes by WΩA and called the big de Rham–Witt complex of A.

It is clear by definition, that considering the unit truncation set, one obtains the usual de Rham
complex. More precisely,the map

η{1} : ΩqA
∼−→W{1}ΩqA

is an isomorphism for all q. Moreover, in degree zero, one has an isomorphism

ηS : WS(A)→WS Ω0
A

for all truncation sets S. This is in line with the p-typical de Rham–Witt complex.
It is possible to define a relative version of the big de Rham–Witt complex, using relative λ-derivations.

This is a big version of Langer and Zink’s relative de Rham–Witt complex [6].
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