Aufgabe 1 (Herbst 2003). Es seien p und q Primzahlen. Warum zerfällt das Polynom

$$f = X^{p^q} - X$$

über dem Körper \mathbb{F}_p mit p Elementen in p verschiedene Faktoren vom Grad 1 und $\frac{p^q-p}{q}$ verschiedene irreduzible Faktoren vom Grad q?

 $\mathit{Hinweis}$: Die Faktoren müssen nicht angegeben werden! Zum Einstieg in die Aufgabe überlege man, daß die Nullstellen von f einen Körper bilden.

Aufgabe 2 (Frühjahr 2007). Betrachten Sie den endlichen Körper \mathbb{F}_5 mit funf Elementen, das Polynom $f(X) = X^3 + X + 1 \in \mathbb{F}_{[X]}$ und den Quotientenring $K = \mathbb{F}_{5}[X]/f((X))$. Weiter bezeichne α die Restklasse von X modulo (f(X)).

- (a) Zeigen Sie, daß K eine Körper mit 125 Elementen und daß $(1, \alpha, \alpha^2)$ eine \mathbb{F}_5 -Basis von K ist.
- (b) Bestimmen Sie die Matrix $M \in \mathbf{GL}_3(\mathbb{F}_5)$, die den Frobenius-Automorphismus $F: K \to K, x \mapsto x^5$ bezüglich der Basis $(1, \alpha, \alpha^2)$ darstellt.
- (c) Bestimmen Sie eine Basis für den Eigenraum von F zum Eigenwert 1.

Aufgabe 3 (Frühjahr 2007). Sei $K = \{0, 1\}$ der Körper mit zwei Elementen, und sei E ein Erweiterungskörper von K mit $|E| = 2^8$ Elementen.

Wieviele primitive Elemente besitzt E? Begründen Sie Ihre Antwort.

Aufgabe 4 (Herbst 1999). Der Körper K enthalte einen endlichen Teilkörper, der aus den n Elementen a_1, \ldots, a_n bestehe. Man beweise: Für jedes Element $a \in K$ gilt

$$a^n - a = \prod_{i=1}^n (a - a_i).$$