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As in the previous parts, this is taken from [1, Section 4.4 and 5.1] In this talk, we want to explain how
to use k-a�noid spaces in the sense of Berkovich to globalise this notion and de�ne k-analytic spaces. Let
k be a non-archimedean normed �eld, M (A ) the spectrum of a (commutative) k-Banach algebra. This
can be endowed with a topology that makes it a compact Hausdor� space. Analogously to rigid spaces,
we would like to see this as local building blocks to construct some sort of ringed space. However, the
topology, which is contrary to rigid spaces an actual topology, creates some obstructions as we will see
later. Let's see what happens, when we try to mimick the rigid approach.

1 A�noid subdomains

We de�ne an analogue of a�noid subdomain of rigid geometry using as well a universal mapping property.

De�nition 1.1. Let A be a k-a�noid algebra. A subset U ⊆M (A ) is called a k-a�noid subdomain, if
there is a bounded map i : A → A ′ of k-a�noid algebras such that:

� the imasge of the �dual� map M (i) is contained in U

� it is universal in the sense that any bounded map φ : A → B such that the dual map M (φ) has
image in U , factors uniquely through i:

A
φ //

i !!

B

A ′
∃!

>>

This determines A ′ uniquely up to unique bounded isomorphism, thus we write A U and call it the
coordinate ring of U .

There is in fact a stronger universal property which can be proved using the k-analytic analogue of
the Gerritzen�Grauert Theorem: let U = M (A U ) ⊂ M (A ) be an a�noid subdomain, choose a point
x ∈ U . Then the completed residue �elds of x for A U and A coincide, in other words, if κ(x) is the
completion of the fraction �eld of A / ker(|− |x), then projection map A → κ(x) factors uniquely through
the canonical map A → A U . Indeed, a�noid subdomains satisfy a universal property with respect to
arbitrary k-Banach algebras (and not only k-a�noid algebras). This stronger universal property follows
as mentioned before from the Gerritzen�Grauert theorem for k-analytic spaces.

It follows also, that the map M (A U ) → U from the de�nition is a homeomorphism. Moreover, the
concept of a�noid domains is wel-behaved with respect to (any analytic) base change (using completed
tensor product). Consequently, K-valued points for K/k an analytic extension don't pose a pronblem an-
more as they did in the rigid setup. Also using completed tensor product, one can show, that intersections
of a�noid domains are again a�noid. On the other hand it is much harder to show that the algebras A U

are A -�at.
As in the rigid case, it is quite straight forward to de�ne Weierstraÿ, Laurent and rational domains.

Comparing these with the open sets, that generate the topology on M (A ), it becomes clear, that in general
a�noid subdomains cannot be open in this topology. Hence the slogan: �open sets in rigid geometry are
closed sets in Berkovich theory�.
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2 Sheaves

As we want to construct coherent sheaves on a�noid spaces and as well globalise this notion, we take note,
that the theorems of Tate and Kiehl from rigid geometry carry over to the new setting. They considered
the strict case (i.e. the ri in the de�nition of a�noid algebra are equal to 1). However, instead of scaling
with ri's one can consider appropriate analytic extensions of the base �eld, which in this setting is perfectly
�ne. The main result then reads as follows.

Theorem 2.1. Let A be a k-a�noid algebra, and M a �nite A -module. Let U be a �nite collection of
a�noid subdomains of X = M (A ) that cover X. De�ne MU := A U ⊗AM for any a�noid subdomain
U ⊂ X. Then the �ech complex C•(U,M) is an exact sequence.

The issue of a structure sheaf will be addressed in the next section, that deals with globalisation.

3 Globalisation

It is not obvious how to construct a structure sheaf. There seems to be no canonical way to associate
rings to the open sets that generate the topology of an a�noid space M (A ). The more natural thing is
to work with a�noid subdomains, which are in general closed. In order to �x this, one has to generalise
the notion of topology, using so called quasi-nets.

De�nition 3.1. A quasi-net on a locally Hausdor� space X is a collection τ of compact Hausdor� subsets
V ⊂ X such that each x ∈ X has a neighbourhood of the form

⋃
Vj for �nitely many Vj ∈ τ with x ∈

⋂
Vj .

The local �niteneyy condition is reminiscent of the �niteness condition in a Grothendieck topology,
and is th key reason, why they can provide a workable substitute for usual open coverings. We procede
to replace the framework of ringed spaces by k-a�noid atlases, which is inspired by the set of all a�noid
subdomains on a k-a�noid space.

De�nition 3.2. Let X ba a locally Hausdor� space. A k-a�noid atlas on X is th data of a quasi-net τ
on X such that

� for all U,U ′ ∈ τ , the set
{
V ∈ τ

∣∣ V ⊆ U ∩ U ′
}
is a quasi-net on U ∩ U ′.

� For each V ∈ τ , there is assigned a k-a�noid algebra A V such that M (A V ) ∼= V is a homeomor-
phism amd such that if V ′ ∈ τ is a subset of V it can be expressed as a k-a�noid subdomain of
M (A V ). The collection of this data is denoted by A .

The triple (X,A , τ) is called a k-analytic space.

Consider for example an a�noid space M (A ). One choice of quasi-net τ would be the set of all
a�noid subsets. This clearly ful�lles the requirements of the de�nition.However, consider instead the
more courious case of τ ′ = {X}. This is also a quasi-net, and both choices together with the associated
a�noids form k-analytic spaces. Clearly, we want to consider the two analytic spaces to be naturally
isomorphic. It seems that the latter one contains less information, however, we will see that it is possible
to recover the information of the space from both quasi-nets as we will see.

In order to make this precise, we need to understand the concept of morphism of k-analytic spaces.
However, as this is quite subtle considering the fact that we cannot pass to the sheaf-language, we weill
describe only a certain type of morphism, that is needed for the construction of some sort of universal or
maximal quasi-net.

De�nition 3.3. Let (X,A , τ) an (X ′,A ′, τ ′) be k-analytic spaces. A strong morphism (X,A , τ) →
(X ′,A ′, τ ′) consists of a continuous map φ : X ′ → X such that for all V ′ ∈ τ ′ and V ∈ τ with V ′ ⊆ φ−1(V )
there is a compatible k-Banach algebra map A V → A V ′ , transitive in the pair (V, V ′).

Now lets start with a k-analytic space (X,A , τ). In two steps we will arrive at a maximal k-analytic
space. First enlarg τ , by letting τ be the set of V ⊂ X such that V is a k-a�noid subdomain in
M (A V ′) = V ′ for some V ′ ∈ τ . In other words, we add all a�noid subdomains of all elements of τ .
Aplying this to the example above of the a�noid case, one would get from the trivial quasi-net {X} on X
to the set of all a�noid subdomains of X. By choice of the elements of τ there is a unique atlas structure
(X,A , τ) (up to unique isomorphism).

But we are not done here. Let τ̂ be the collection of subsets W ⊂ X with a �nite cover of Wi ∈ τ such
that
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1. Wi ∩Wj ∈ τ

2. the natural map A Wi⊗̂kA Wj → A Wi∩Wj is surjective, such that the residue norm is equivalent to
the given norm on the target (which is automatically satis�ed for non-trivial absolute value ojn k.

3. denote by Â {Wi} the equaliser of ∏
A Wi ⇒

∏
A Wi∩Wj

Then we require that Â {Wi} be a�noid and the canonical map W → M (Â {Wi}) is a homeomor-
phism identifying each Wi ⊂W with a k-a�noid subdomain.

It can be shown, that the algebra Â {Wi} is independent of the choice of covering of W , so instead we

write Â W . If W was already in τ , then Â W = A W . The assignement W 7→ Â W for all W ∈ τ̂ provides

a k-a�noid atlas, and (X, Â , τ̂) is a k-analytic space.
It is maximal in the sense that doing the same procedure again will give back the same structure, i.e.

(X,
̂̂
A , ̂̂τ) = (X, Â , τ̂).

The canonical morphism (X,A , τ) → (X, Â , τ̂) is a string morphism in the sense above. Now invert
these speci�c strong morphisms formally. Thus we localise the category of k-analytic spaces with respect
to these morphisms, which identi�es a maximal atlas with all the atlases that induces it.

One can do this over, with only using strict k-analytic spaces, which is the natural category when
promoting a rigid space to a k-analytic space. In a similar thought, it is possible to consider the category
of all K-analytic spaces for all analytic extensions K/k in one category. This remedies the question how
to deal with K-valued points, that posed a problem in the setting of rigid spaces. Moreover it is a recent
result by Temkin, that strictly k-analytic spaces form a full subcategory of k-analytic spaces.

Originally, Berkocich considered k-analytic spaces, where each point has an a�noid neihbourhood.
But this set of spaces is rather small, not including cases that come from rigid geometry. Consider the
following light generalisation.

De�nition 3.4. A k-analytic space (X,A , τ) is called good, if every x ∈ X has a neighbourhood V ∈ τ̂ .

There is a natural analyti�cation functor. The k-analytic spaces obtained from algebraic k-schemes
are always good. However, there are k-analytic spaces associated to a rigid space that are not good.

To de�ne sheaves, we need one more de�nition to replace the term �admissible open�.

De�nition 3.5. Let (X,A , τ) be a k-analytic space. A k-analytic domain in X is a subset Y ⊂ X such
that for all y ∈ Y there exist V1, . . . , Vn ∈ τ̂ with y ∈

⋂
Vj and

⋃
Vj a neighbourhood of y in Y (in

particular all Vi ⊂ Y .
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