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We continue our journey to explore non-archimedean geometry, �nishing up with a little deeper study
of Berkovich spaces. This part will cover (but not follow one-to-one) Sections 5.2 and 5.3 inlcuding the
section we skipped and need now, Section 4.5 of [1].

To be more speci�c, we will discuss some constructions from Berkovich, (also called k-analytic) geom-
etry, some of whose show what makes the theory so appealing, or powerful, and some make a relation to
rigid analytic geometry possible.

1 Fibre products

As we have seen in the previous part, one can globalise a�noid spaces, by glueing along so-called k-
analytic domains. This proces can be taken one step further, and one can patch together in the same
manner k-analytic spaces and morphisms. One of the constructions that can be done in this way is the
globalisation of �bre products.

Let k be a non-archimedean �eld. As we have seen in rigid geometry, there are several di�erent versions
of the tenorproduct. For a pair of morphisms of k-a�noid algebras

A → A ′ and A → A ′′

we obtain via the completed tensor product over A another k-a�noid algebra A ′ ⊗̂A A ′′. Then the
induced morphisms of k-analytic spaces

M (A ′ ⊗̂A A ′′)→M (A ′) and M (A ′ ⊗̂A A ′′)→M (A ′′)

have the same composition to M (A ) so that the diagramm

M (A ′ ⊗̂A A ′′) //

��

M (A ′′)

��
M (A ′) //M (A )

commutes, and by the universalt property of the tensor product and of a�noid subdomains, M (A ′ ⊗̂A A ′′)
satis�es the universal property of the �ber product in the category of k-analytic spaces, so that we may
set

M (A ′)×M (A ) M (A ′′) := M (A ′ ⊗̂A A ′′).

It is also important in the proof to note that one can recover uniquely morphisms on k-analytic spaces
frim a speci�cation of the morphism on a suitable a�noid cover. This latter fact also allows us to globalise
this construction uniquely to obtain �bre products of arbitrary k-analytic spaces.

We don't go into details here, but make some remarks that should bring the construction in perspective.
Because of the nature of quasi-nets that are used in tis globalisation the glueing process is a bit more
invoilved as in the case of schemes, althogh it follows a similar strategy. Because of the nature of the
construction, �bre products are well behaved with respect to k.analytic domains, meaning that the �ber
product of two k-analytic domains over a k-analytic domain, is a k-analytic domain itself.
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The other point to note is that the underlying topological space of the �ber product of two k-analytic
spaces |X ′ ×X X ′′| is not the same as the �bre product of the underlying topological spaces of each
k-analytic space in the category of topological spaces, although the natural map

|X ′ ×X x′′| → |X ′| ×|X| |X ′′|

is a proper surjection. Note hereto, that the glueing proces for k-analytic spaces unlike the glueing process
for topological spaces does not use open coverings, but quasi-nets.

Whle we are at it, recall that a morphism of topological spaces is called proper, if it is separated (the
diagonal is a closed embedding) and universally closed.

Lastly, a point in X ′ ×X X ′′ does not necessarily have a base of neighourhoods of the type Y ′ ×Y Y ′′

for k-analytic domains, Y , Y ′ and Y ′′.

Question. Can you �nd an example for this?

2 Extension of the base �eld

Strictly speaking, this should be part of the previous section, as it a special case of �bre product. Let
K/k ba an analytic extension, i.e. with compatible absolute value with respect to which it is complete.
Then for a k-a�noid algebra A we obtain K-a�noid algebra

A K = K⊗̂k A

and a natural morphism from A to A K . The induced morphism

M (A K)→M (A )

from a K-a�noid space to a k-a�noid space serves as a �bre product

M (A )×M (k) M (K) := M (A K)

in the category of analytic spaces over arbitrary analytic extension �elds of k. This extension of the ground
�eld functor is naturally transitiv with respect to further extensions of the base �eld.

We noted before that this is one advantage of k-analytic spaces over rigid analytic spaces, as it allows
us to �see� points with coe�cients in analytic extension �elds of our base �eld.

The remarks made above for �bre products apply here as well.

3 Separated morphism

Similarly to the rigid analytic case, one can de�ne closed immersions between k-analytic spaces. Thus it
should be something along the lines:

De�nition 3.1. A map between k-analytic spaces f : (X ′,A ′, τ ′) → (X,A , τ) is a closed immersion if
there is an atlas τ̃ on X such that f−1(τ̃) is an atlas on X ′ such that for V ∈ τ̃ there is V ′ ∈ F−1(τ̃) with
a correspoinding map on coordinate rings A V → A V ′ which is a surjection.

However, one has to pay special attention to k-analytic spaces that are not good.

Question. Is this equivalent to requiring that for the maximal atlas τ̂ on X, f−1(τ̂) ⊂ τ̂ ′ is an atlas on
X ′ and satis�es the corresponding property as abve?

Using this, we may de�ne the notion of separatedness.

De�nition 3.2. A morphism of k-analytic spaces f : X ′ → X is called separated, if the diagonal map
∆f : X → X ×X′ X is a closed immersion.

Note that a diagonal with closed image might not be a closed immersion. This is due to the fact, that
for the glueing in the de�nition, we used atlases instead of topological open covers. This accounts for the
di�erence between separatedness and the Hausdor� property for k-analytic spaces as the latter one is a
purely topological property.
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Example 3.3. There are compact Hausdor� k-analytic spaces that are not separated over M (k).

More explicitely, the distinction between the two conditions is due on the on hand to the di�erence
between topological and k-analytic �bre products as already discussed before; on the other hand diagonal
maps in k-analytic spaces may lack, because of the glueing proces, a kind of immersion property, that
they always have in category of spaces, where the topology is used for the gluing.

On the other hand, purely for the underlying topological spaces, one can show (classically) that Haus-
dor� and separated are equivalent. That is, for a map of k-analytic spaces f : X ′ → X, the induced
map on the underlying topological spaces |f | : |X ′| → |X| is separated (in other words ∆|f | is a closed
embedding) if and only if it is Hausdor� (i.e. preimages of Hausdor� subsets are Hausdor�). By contrast,
if f : X ′ → X is separated, then |f | : |X ′| → |X| is separated, so Hausdor�, but the converse is false in
general. In particular, if X is separated over M (k) then X is Hausdor�.

4 Analyti�cation functors

We want to describe the relations between k-analytic spaces, algebraic k-schemes and rigid-analytic spaces
over k. We assume here (as we did for the most part in the rigid part) that k has non-trivial absolute
value.

Recall that for any quasi-compact and quasi-separated rigid space, is can be given by gluing �nitely
many k-a�noids along quasi.compact admissible opens. By further choosing a �nite, thus admissible cover
of each quasi-compact overlap by a�noid opens, we have a characterisation of X in terms of �nitely many
k-a�noid spaces and a�noid subdomains.

This can be caried over to the category of k-analytic spaces using atlases instead of admissible covers,
and for the above X a compact Hausdor� strictly k-analytic space Xan called the analyti�cation of X.
This construction is independent of the choice of covering of X (as one can on the k-analytic side pass to
the maximal atlas) and it yields a functor{

quasi-compact and quasi-separated
rigid spaces

}
←→

{
compact Hausdor� strictly

k-analytic spaces

}
.

This functor adds points to a rigid space: the underlying set of X is the set of points x ∈ Xan that have
coe�cients in a �nite extension �eld of k, [κ(x) : k] <∞. An example shows that k-analytic spaces that
arise in this way may fail to be good � the only ones considered in Berkovich's �rst paper [2] � which are
therefore inadequat for a satisfactory general theory that.

Example 4.1. Assume that k has non-trivial absilute value. Consider the admissible open locus (in rigid
analytic spaces)

X =
{

(t, t′) ∈ B2
k

∣∣ |t′| = 1
}
∪
{

(t, t′) ∈ B2
k

∣∣ |t| = 1
}

that is the union of two a�noid subdomains and the complement of the open unit polydisc. The associated
k-analytic space Xan is a k-analytic domain in M (k〈t, t′〉) that is not good. More explicitely, the point ξ
representing the Gauÿ norm lies in Xan but does not admit a k-a�noid neighbourhood. This can be seen
using results by Temkin [3].

We list some properties.

� one can show that the above functor is even an equivalence of categories

� and is compatible with �bre products and extension of the base �eld.

� Let f : X ′ → X be a morphism between quasi-compact and quasi-separated rigid spaces and
fan : X ′an → Xan the induced morphism of k-analytic spaces. Then f is a closed immersion if and
only if fan is a closed immersion.

� Applying this to the diagonal map givs the same result for separated morphisms.

� It follows that if X is a quasi-compact and quasi-separated rigid space that is not separated then
Xan is a compact ausdor� strictly k-analytic space that is not separated over M (k).
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One can do the same procedure of analyti�cation without quasi-compactness, but in that case, one
has to impose a �niteness codition on both sides of the equivalence. We wont go into details here.

There is also a natural analyti�cation functor from{
algebraic
k-schemes

}
←→

{
strictly

k-analytic spaces

}
compatible with �bre products and extension of the base �eld as well. Moreover it is compatible with the
analyti�cation functor from algebraic k-schemes to rigid spaces over k and with the above introduced one
from rigid spaces (with certaine conditions) to certaine strictly k-analtic spaces.

We said earlier, that the analyti�cation functor adds points on the underlying topological spaces.
Interestingly, if one considers a k-analytic space and removes a non-classical point, that is a point that
doesn't appear in the uncerlying topological spaces of the associated rigid space, this can still have an
impact on the associated rigid space, even though one couldn't se the point topologically in teh �rst place.
Let us consider an example.

Example 4.2. Let k be as above a non-archimedean �eld with non-trivial absolute value, and X =
M (k〈T 〉), with the open immersion U = X − {ξ} → X where ξ is the point corresponding to the Gauÿ
norm. Both are paracompact Hausdor� strictly k-analytic spaces. What can we say about the associated
rigid analytic spaces � considering the fact, that the Gauÿ point has in�nite degree over k, so it doesn't
appear in the rigid space, which implies, that at least the underlying topological spaces of the rigid spaces
associated X0 and U0 to X and U coincide. However, it is another matter with the rigid spaces themselves.
It is clear that X0 = B1

k. On the other hand, one can show that U0 is a disjoint union of twisted open unit
discs labeled by the closed points of A1

k
(if k is already algebraically closed, then U0 is a union of ordinary

unit discs). In particular, the map U0 → X0 is a bijective local isomorphism that is not an isomorphism.
Indeed, it identi�es U0 with the disjoint unioin of the open residue discs for B1

k (which are by the way a
cover of B1

k which is non-admissible).

Question. This question seems interesting to me, but I didn't have time to think about: Let X be a quasi-
compact and quasi-separated rigid space, and Xan the associated Berkovich space via the analyti�cation
funtor. What conditions do we have to impose on X, for Xan to be good?

5 A Grothendieck topology on Berkovich spaces

As we have seen, and will later come to again, Berkovich analytic spaces have a very nice topology.
Unfortunately, it is not compatible with the glueing process used to globalise. Of course one could use
quasi-nets to de�ne a Grothendieck topology on a k-analytic space much like we did in the case of rigid
analytic spaces. Of course this is not an actual topology and loses many of the good properties that the
natural topology of a k-analytic space has. The objects of the G-topology are the k-analytic subdomains
Y ⊂ X and a covering {Yi} of Y is a set-theoretic covering, which satis�es the local �niteness condition of
quasi-nets (each y ∈ Y has a neighourhood of �nitely many Yi's such that it's contained in the intersection
y ∈

⋂
Yi. This corresponds to the local �niteness property of admissible covers in rigid geometry. We

denote by XG the space X considered with this Grothendieck topology. As we can conclude from what we
said last time about a�noid subdomains, there is a unique way to de�ne a structure sheaf on this space.
Restricting this sheaf to open sets in the natural topology of X gives us a sheaf on X.

However, as we have seen, a�noids are generally not open in the natural topology. In particular, if
a k-analytic space is not good, it is di�cult to work with stalks, because there are points then that lack
a�noid neighbouroods. This makes �atness as well to a di�cult concept in this context. For example, one
an construct examples of coordinate rings of curves, whose underlying topological space is in fact a point,
and becomes only a curve after su�cient extension of the base �eld (e.g. k〈r−1X, rX−1〉). Sometimes it
is possible to �rst treat the good case in a proof, and then by gluing arguments �bootstrap� to the general
case. One example for this would be a theory of coherent sheaves. Another one is the de�nition of �nite
morphisms.

De�nition 5.1. A map f : X ′ → X of k-analytic spaces is �nite if, for all x ∈ X there exist k-a�noid
subdomains V1, . . . Vn ⊂ X such that the union

⋃
Vi is a neighbourhood of x in X, x ∈

⋃
Vi, x ∈

⋂
Vi,

and the preimages V ′j = f−1(Vj) ⊂ X ′ are k-a�noid subdomains in X ′ such that the induced morphism
A Vj

→ A V ′
j
of Banack algebras is �nite and compatible with norms.
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This is a local property in the sense that the requirements on the pair (Vi, V
′
i ) holds for every pair

(V, f−1(V )).

6 When Berkovich spaces are useful

There are examples when passing to Berkovich theory makes proofs easier and more intuitive. WE only
mention a couple of them.

Examples 6.1. � Let X = Sp(A) and Z = Sp(A/I) for some ideal I ⊂ A with a set of generators
{f1, . . . , fn}. Let U be an admissible open that contains Z. For ε > 0 we can consider the tube
{|f1| 6 ε, . . . , |fn| 6 ε} around Z. The claim is that there exist ε such that this tube is contained
in U . This can be proved within the framework of rigid geometry, but is much more accessible if
translated to k-analytic geometry. This fact also plays a role in the de�nition of rigid cohomology.

� The theory of properness.

� The theory of étale morphisms.
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