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The existence of motivic cohomology fro smooth varieties was conjectured by Beilinson and Lichten-
baum. This was stimulated by observations of Suslin and Nesterenko-Suslin concerning Milnor and Quillen
K-groups of �elds and later local rings. Essentially, motivic cohomology with coe�cients in an abelian
group A is a (bigraded) family of contravariant functors

Hpq(−, A) : Sm /k → A b

from smooth schemes over a given �eld k to abelian groups, satisfaing two sets of (conjectural) properties.
One set concerns motivic cohomology itself, for example

� homotopy invariance

� Mayer-Vietoris sequence

� Gysin sequence

� Beilinson-Soulé vanishing conjecture (Hpq = 0 for p < 0)

� Beilinson-Lichtenbaum conjecture (étale descent: Hpq
Zar
→ Hpq

ét
is an isomorphism)

The other set of properties relates motivic cohomology to other invariants of varieties. Considering the
introductory remarks it is not surprising that one of Beilinson and Lichtenbaum's conjectures was that
for an essentially smooth local ring A over a �eld, there should be an isomorphism

KM
n (A)

∼−→ Hn,n(A,Z).

This was established by Kerz for regular local rings with �big enough� residue �elds. Some elementary
comparison results that have been established are

� Hp,q(X,A) = 0 for q < 0 and if X is connected

Hp,0(X,A) =

{
A for p = 0

0 for p 6= 0

� One has

Hp,1(X,Z) =


O∗(X) for p = 1

Pic(X) for p = 2

0 otherwise

� For a �eld k
Hp,p(k,A) = KM

p (k)⊗A

which is a special case of the above mentioned conjecture.
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� For a strictly Hensel local scheme S/k and n prime to char k

Hp,q(S,Z /n) =

{
µ⊗qn (S) for p = 0

0 otherwise

� for Bloch's higher Chow groups Hp,q(X,A) = CHq(X, 2q − p;A) and in particular

H2q,q(X,A) = CHq(X)⊗A

Often Bloch's construction is used as de�nition of motivic cohomology. In general, Bloch's de�nition
is better suited for studying mod-p phenomena in positive characteristic p. But it seems that Suslin-
Voevodsky's de�nition is more apt to prove certain statements like the Beilinson-Lichtenbaum conjecture.

1 Finite correspondences

1.1 De�nition of the category

The functor we want to de�ne has as its domain smooth separated schemes (of �nite type) over a per-
fect �eld k. However, the category Sm /k with its usual morphisms is too rigid for some topologi-
cal/homological phenomena such as homotopy equivalence. Instead, we consider a di�ernet kind of mor-
phisms in this category � �nite correspondences � and call the resulting category C ork, which contains
Sm /k. All schemes considered are separated.

De�nition 1.1.1. LetX/k be smooth and connected and Y/k any scheme. An elementary correspondence
from X to Y is an irreducible closed subscheme W ⊂ X × Y , such that the associated integral subscheme
is �nite and surjective over X. If X is not connected, we mean by this an elementary correspondence from
a connected component of X.

We denote by C or(X,Y ) the free abelian group generated by the elementary correspondences from X
to Y . Its elements are called �nite correspondences.

The de�nition implies that for a decomposition X =
∐
Xi into connected components C or(X,Y ) =

⊕C or(Xi, Y ).

1.2 Compositions

For compositions of �nite correspondences it is enough to de�ne them for elementary correspondences.
Let V ∈ C or(X,Y ) and W ∈ C or(Y, Z) elementary correspondences. We form the intersection product
[T ] = (V × Z) · (X ×W ) in X × Y × Z. The composition W ◦ V is then de�ned to be the push forward
of [T ] along the projection X × Y × Z → X × Z. We have the following diagram

X × Y

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
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33

33
33
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33
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33

3

X × Y × Z //

��

ffNNNNNNNNNN
Y × Z //

��

Z

X × Y //

��

Y

X

This is possible because [T ] is �nite over X × Y , so that the push-forward is de�ned and it is a standard
argument that this de�nes a �nite correspondence. The composition is associative and bilinear with
identity idX = ∆X the correspondecne associated to the diagonal.

This de�nes the category C ork and from the above remarks it is clear that this is an additive category
with as zero object and disjoint union as coproduct.
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1.3 Relation to the category Sm /k

We can see Sm /k as a subcategory of C ork by sending a morphism f : x → Y to its graph Γf . The
identity element of C or(X,X) for the composition is the graph Γ1 associated to the identity of X, which
is the support of the diagonal ∆(X) ⊂ X × X. If in addition Y is smooth and X is connected, and
f : X → Y is �nite and surjective, the transpose of Γf is a correspondence from Y to X. The map

(f : X → Y ) 7→ Γf

that sends a morphism of schemes to its graph is in fact a covariant faithful functor

Sm /k → C ork .

We have already seen, that the graph Γ1 associated to the identiy id : X×X is the identity for C or(X,X)
and it is a standard computation that for the composition of two morphisms

Γg ◦ Γf = Γg◦f

1.4 Tensor product

A �tensor product� in C ork can be de�ned in the following way.

De�nition 1.4.1. Let X,Y ∈ C ork. Then we set

X ⊗ Y = X × Y.

If V ∈ C or(X,X ′) and W ∈ C or(Y, Y ′) then the cycle associated to the subscheme V ×W de�nes a
�nites correspondence from X ⊗ Y to X ′ ⊗ Y ′.

This makes C ork into a symmetric monoidal category.

Examples 1.4.2. 1. The set C or(k,X) is the set of zero-cycles of X. If W is a �nite correspondence
from A1 to x and s, t : Spec k → A1 are k-points, one can show that W ◦Γs and W ◦Γt are rationally
equivalent.

2. Let x ∈ X be a closed point conseidered as a correspondence from k to X. Then the composition

Spec k → X → Spec k

is multiplication by the degree [k(x) : k].

2 Presheaves with transfers

2.1 De�nition

In order to de�ne motivic cohomology we need the notion of presheavs with transfer.

De�nition 2.1.1. A presheaf with transfers is a contravariant additive functor

F : C ork → A b

We denote this category by PST(k).

By additivity, there is a pairing C or(X,Y )⊗F (Y )→ F (X). Restricting to the subcategory Sm /k
a presheaf with transfers may be seen as presheaf of abelian groups with an additional transfer maps
F (X)→ F (Y ) for the �nite correspondences from X to Y .
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Examples 2.1.2. 1. A constant presheaf A on Sm /k can be regarded as presheaf with transfers,
where the associated transfer for a correspondence W is given by multiplication with deg(W ) over
X.

2. The sheaf O∗ has a transfer induced by the usual norm map of �elds.

3. Similarly for the sheaf O a transfer is induced by the usual trace map on function �elds.

4. This can be extended to the Milnor K-sheaf as was shown by Kerz.

5. The Quillen K-sheaf K0 does not admit a transfer.

6. The classical Chow groups are presheaves with transfers, where the transfer for a �nite correspon-
dence is given vie �at pull-back and intersection product.

In all these cases one has to verify that the transfer is compatible with composition in C ork.

Fact. If F is a presheaf with transfers, the associated Nisnevich/étale sheaf is naturally equipped with
transfers as well. The functor that maps a presheaf to its Nisnevich sheaf

αtrNis : PST(k)→ ST(k)

is left adjoint to the inclusion ST(k) ⊂ PST(k) and commutes with the functor that forgets the
transfer. This is a priori wrong for Zariski topology.

Representable functors are another important category of presheaves with functors. By the Yoneda
lemma, representable functors provide embeddings of Sm /k and C ork into the abelian category PST(k).

De�nition 2.1.3. Let Ztr(X) = C or(−, X)

If a morphism Y → X in Sm /k is a Nisnevich cover, the induced morphism of sheaves

Ztr(Y )→ Ztr(X)

is an epimorphism. (And we even have an exact sequence

Ztr(Y ×X)→ Ztr(Y )→ Ztr(X)→ 0

for Nisnevich topology)

De�nition 2.1.4. For a pointed scheme (X,x) we de�ne Ztr(X,x) to be the cokernel of the map x∗ :
Z = Ztr(x)→ Ztr(X) associated to the point x : Spec k → X. Since x∗ splits the structure map, we have
a natural splitting Ztr(X) = Z⊕Ztr(X,x).

For our purposes the pointed scheme Gm = (A1−0, 1) will be important. We can also take products
in the following way.

De�nition 2.1.5. Let (Xi, xi)i be a family of pointed schemes. We de�ne Ztr((X1, x1) ∧ · · · ∧ (Xn, xn))
to be

Coker
(
⊕Ztr(X1 × · · · × X̂i × · · · ×Xn)

id×···xi···×id−−−−−−−−−→ Ztr(X1 × · · · ×Xn)
)

and Ztr((X,x)∧0) = Z.
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2.2 Simplicial objects

De�nition 2.2.1. Let ∆ be the category whose objects are the natural numbers n ∈ N0. We denote them
by [n] = {0, . . . , n}. And order preserving functins as morphisms. For a category C a simplicial object is
a covariant functor

∆→ C

i.e. a presheaf of ∆ with values in C . Similar for cosimplicial objects.

De�nition 2.2.2. Let
∆n
k = Spec(k[x0, . . . , xn]/(

∑
xi − 1).

This de�nes a cosimplicial scheme ∆• over k where the face maps

∂j : ∆n → ∆n+1

are given by the equation xj = 0.

For simplicial and cosimplicial objects it is standard to de�ne the associated complex. For a presheaf
F of abelian groups on Sm /k, F (∆•) and F (U ×∆•) are simplicial abelian groups.

De�nition 2.2.3. We write C•F for the simplicial presheaf U 7→ F (U×∆•) and C∗F for the associated
complex.

They are both exact functors.

2.3 Homotopy invariance

De�nition 2.3.1. A presheaf is homotopy invariant, if for every X the map

F (X)→ F (X × A1)

is an isomorphism.

Let iα : X ↪→ X × A1 be the inclusion x 7→ (x, α). A presheaf F is homotopy invariant i�

i∗0 = i∗1 : F (X × A1)→ F (X)

for all X. Voevodsky has shown:

Theoreme 2.3.2. 1. Let F ∈ PST(k) be homotopy invariant. Then the associated Nisnevich sheaf
aNis F is also homotopy invariant. As well as the presheaves with transvers

X 7→ Hn
Nis(X,F )

(and we have Hn
Nis(X,F ) ∼= Hn

Zar(X,F )).

2. If aNis F = 0 then aNisC∗F is an acyclic complex in ST(k)Nis.

As a consequence we obtain a

Corollary 2.3.3. Let F ∈ PST(k) and denote

K := aNisC∗F

the associated complex in ST(k)Nis. Then for all X ∈ Sm /k

HnNis(X,K ) ∼= HnNis 8x× A1,K )

is homotopy invariant.
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Proof: Let H nC∗F be the presheaf of the cohomology of C∗F . This is in PST(k). A general
lemma says that for all X ∈ Sm /k

H nC∗F (X) ∼= H nC∗F (X × A1).

This is very similar to results in topology. By part 1 of the previous theorem

Hi
Nis (X, aNisH

nC∗F ) ∼= Hi
Nis

(
X × A1, aNisH

nC∗F
)
.

By the hypercohomology spectral sequence for all

Hp
Nis (Y, aNisH

q K )⇒ Hp+qNis(Y,K ).

Taking Y = X or Y = X × A1 in this formula shows the claim. 2

3 Motivic cohomology

3.1 the category of motives

Now more generally, if K is a complex of PST(k), then the previous construction produces a double
complex

· · · → C2 K → C1 K → C0 K → 0

and its total complex satis�es for all X ∈ Sm /k

Hn(X, totC∗K ) ∼= Hn(X × A1, totC∗K ).

De�nition 3.1.1. We de�ne the category of motives DMeff
− (k) to be the triangulated subcategory of the

derived category D−(ST(k)Nis) consisting of the complexes K such that Hn(X,K ) ∼= Hn(X × A1,K ).
By the above discussion (notably the second part of the theorem and the corollary), one has a functor

D−(ST(k)Nis) → DMeff
− (k)

K 7→ totC∗K

which is left adjoint to the inclusion.

3.2 The motivic complex

De�nition 3.2.1. For all X ∈ Sm /k we let

M(X) := C∗ Ztr(X)

be the associated motivic complex. This de�nes an object in DMeff
− (k).

As we have seen above, for an element x ∈ X(k) there is a split exact sequence

0→ Z→ Ztr(X)→ Ztr(X,x)→ 0

where Z = Z((X,x)∧0). In particular,

Ztr(Gm) = Z⊕Ztr(Gm, 1),

or more generally

Ztr(Grm) =

r⊕
i=0

 ⊕
I⊂1,...,i

Ztr((Gm, 1)∧#I)

 .

In the following, we will omit the `1' from Ztr((Gm, 1)).
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De�nition 3.2.2. For each q > 0 we de�ne the following complex of presheaves with transfers

Z(q) = C∗ Ztr(G∧qm )[−q]

seen as a bounded above cochain complex. If A is any other abelian group, then A(q) = Z(q) ⊗ A is
another cpomplex of presheaves with transfers.

The shifting convention implies that Z(q)i = 0 whenever i > q, and the qth term is Ztr(G∧qm ). it is in
fact a complex of nisnevich sheaves over Sm /k. For all X ∈ Sm /k we denote by Z(q)X the restriction
to the Nisnevich (ir Zariski) site of X.

We de�ne the motivic cohomology as follows.

De�nition 3.2.3. Hi,r(X,Z) := Hi
mot(X,Z(r)) = H(

NisX,Z(r)).

This is formally

HomD−(ST(k)Nis)(Ztr(X),Z(r)[i] = HomDMeff
− (k)(M(X),Z(r)[i])

where the equality follows by adjunction.
Some properties:

� Hp(X,Z(q)) = 0 if p > q + dimX.

� It is unknown if Hp(X,Z(q)) = 0 if p < 0.

� One can easily see that

Hp(X,Z(1)) =


Γ(X,O∗X) for p = 1

Pic(X) for p = 2

0 otherwise

� The wedge product of pointed schemes induce a map of motivic complexes

Z(m)⊗ Z(n)→ Z(m+ n).

This is not totally straight forward. The construction is homotopy associative and thus for each
smooth X there are pairings

Hp(X,Z(q))⊗Hp′(X,Z(q′))→ Hp+p′(X,Z(q + q′))

which are skew-symmetric for the �rst grading and make H∗(X,Z(∗)) into an associative graded-
commutative ring.
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