The motivic pro-complex

Student Number Theory Seminar
University of Utah

27th February 2013

1 Milnor K-theory

In this section we recall the definition and basic properties of Milnor K-theory for fields and rings. Following [17] we give a definition for the Milnor K-sheaves and state the Gersten conjecture in equicharacteristic.

1.1 Milnor K-theory for fields

We start by recalling the definition of the Milnor K-groups for fields in generators and relations along with some properties.

Let F be a field and $T^{*}(F)$ the tensor algebra of F. Let I be the two-sided homogenous ideal in $T^{*}(F)$ generated by the elements $a \otimes(1-a)$ with $a, 1-a \in F^{*}$.

Definition 1.1.1. The Milnor K-groups of the field F are defined to be

$$
K_{n}^{M}(F):=T^{n}(F) / I
$$

They form a graded ring $K_{*}^{M}(F)=T^{*}(F) / I$. The class of $a_{1} \otimes \cdots \otimes a_{n}$ in $K_{n}^{M}(F)$ is denoted by $\left\{a_{1}, \ldots, a_{n}\right\}$. Elements of I are usually called Steinberg relations.

The following basic properties are standard.

- $K_{0}^{M}(F)=\mathbb{Z}, K_{1}^{M}(F)=F^{*}$.
- For a field extension $F \hookrightarrow E, \Rightarrow$ there is a natural morphism $K_{*}^{M}(F) \rightarrow K_{*}^{M}(E)$.
- It is an anticommutative ring.
- For $a, a_{i} \in F^{*}$ with $a_{1}+\cdot s a_{n}=1$ or 0

$$
\begin{aligned}
\{a,-a\} & =\{a,-1\} \\
\left\{a_{1}, \ldots, a_{n}\right\} & =0
\end{aligned}
$$

1.2 The theory for local rings with infinite residue fields

We briefly recall Kerz's discussion of Milnor K-theory in the case when the residue fields have "enough" elements (see [17]).
Definition 1.2.1. For a regular semi-local ring R over a field k the Milnor K-groups are given by

$$
K_{n}^{M}(R)=\operatorname{Ker}\left(\bigoplus_{x \in R^{(0)}} K_{n}^{M}(k(x)) \xrightarrow{\partial} \bigoplus_{y \in R^{(1)}} K_{n}^{M}(k(y))\right)
$$

In an attempt to generalise the definition of the Milnor K-ring for fields to arbitrary unital rings, one can define a graded ring in the following way:

Definition 1.2.2. For a unital ring R let

$$
\bar{K}_{*}^{M}(R)=T^{*}(R) / J
$$

where J is the two-sided homogeneous ideal generated by the Steinberg relations and elements of the form $a \otimes(-a)$.

If R is a regular semi-local ring over a field, there is a canonical homomorphism of groups

$$
\bar{K}_{i}^{M}(R) \rightarrow K_{i}^{M}(R)
$$

which is surjective if the base field is infinite (or sufficiently large, as in [17]). Kerz proves that in this case the additional relation $\{a,-a\}=0$ in the definition is obsolete and that the usual relations hold.

We want to globalise this to schemes.
Definition 1.2.3. Define $\overline{\mathscr{K}}_{*}^{M}$ to be the Zariski sheaf associated to the presheaf

$$
U \mapsto \bar{K}_{*}^{M}\left(\Gamma\left(U, \mathscr{O}_{U}\right)\right)
$$

on the category of schemes.
Inspired by Definition 1.2.1 one defines the following.
Definition 1.2.4. Let \mathscr{K}_{n}^{M} be the sheaf

$$
U \mapsto \operatorname{Ker}\left(\bigoplus_{x \in U^{(0)}} i_{x *} K_{n}^{M}(k(x)) \xrightarrow{\partial} \bigoplus_{y \in U^{(1)}} i_{y *} K_{n}^{M}(k(y))\right)
$$

on the big Zariski site of regular varieties (schemes of finite type) over a field k, where i_{x} is the embedding of a point x in U.

One part of the Gersten conjecture for Milnor K-theory is to show that these two definitions coincide. Kato constructed a Gersten complex of Zariski sheaves for Milnor K-theory of a scheme X

$$
\begin{equation*}
0 \rightarrow \overline{\mathscr{K}}_{n}^{M} \rightarrow \bigoplus_{x \in X^{(0)}} i_{x *} K_{n}^{M}(k(x)) \rightarrow \bigoplus_{y \in X^{(1)}} i_{y *} K_{n}^{M}(k(y)) \rightarrow \cdots \tag{1}
\end{equation*}
$$

In [23] Rost gives a proof that this sequence is exact if X is regular and of algebraic type over an arbitrary field k except possibly at the first two places. Exactness at the second place was shown independently by Gabber and Elbaz-Vincent/Müller-Stach. Finally Kerz proved that the Gersten complex is exact at the first place for X a regular scheme over a field, such that all residue fields are big enough.

In particular, this shows:
Corollary 1.2.5. Let X be a regular scheme of dimension n over an infinite field. Then

$$
\mathscr{K}_{*}^{M}=\overline{\mathscr{K}}_{*}^{M} .
$$

1.3 The theory for local rings with finite residue fields

As Kerz points out in [18], the Gersten conjecture does not hold in general if we use the same construction of Milnor K-theory for local rings with finite residue fields.

Let \mathfrak{S} be the category of abelian sheaves on the big Zariski site of schemes and $\mathfrak{S T}$ the full subcategory of sheaves that admit a transfer (or norm) map in the sense of Kerz [18]. Furthermore, let $\mathfrak{S T}{ }^{\infty}$ be the full
subcategory of sheaves in \mathfrak{S} which admit norms as described if we restrict the system to local A-algebras A^{\prime} with infinite residue fields. An example would be the Milnor K-sheaf \bar{K}_{n}^{M} for every n.

A main result in Kerz's article [18] is that for a continuous functor $F \in \mathfrak{S} \mathfrak{T}^{\infty}$ there exists a continuous functor $\widehat{F} \in \mathfrak{S T}$ and a natural transformation satisfying a universal property. Namely, for an arbitrary continuous functor $G \in \mathfrak{S T}$ together with a natural transformation $F \rightarrow G$ there is a unique natural transformation $\widehat{F} \rightarrow G$ making the diagram

commutative. Moreover, for a local ring with infinite residue field, the two functors coincide. It is constructed using rational function rings.

As a corollary we obtain an "improved" Milnor K-theory, taking into account that $\overline{\mathscr{K}}_{n}^{M}$ is in $\mathfrak{S} \mathfrak{T}^{\infty}$ and continuous.
Corollary 1.3.1. For every $n \in \mathbb{N}$ there exists a universal continuous functor $\widehat{\mathbb{K}}_{n}^{M} \in \mathfrak{S T}$ and a natural transformation

$$
\overline{\mathscr{K}}_{n}^{M} \mapsto \widehat{\mathscr{K}}_{n}^{M}
$$

such that for any continuous $G \in \mathfrak{S T}$ together with a natural transformation $\overline{\mathscr{K}}_{n}^{M} \rightarrow G$ there is a unique natural transformation $\widehat{K}_{n}^{M} \rightarrow G$ such that the diagram

commutes.
In the affine case this is denoted by

$$
K_{*}^{M} \mapsto \widehat{K}_{*}^{M}
$$

We list some of the important properties, proved in [18, Proposition 10].

1. Let (A, \mathfrak{m}) be a local ring. Then $\widehat{K}_{1}^{M}(A)=A^{\times}$.
2. $\widehat{K}_{*}^{M}(A)$ has a natural structure as graded commutative ring.
3. The ring $\widehat{K}_{*}^{M}(A)$ is skew symmetric.
4. For $a_{1}, \ldots, a_{n} \in A^{\times}$with $a_{1}+\cdots+a_{n}=1$ the image $\left\{a_{1}, \ldots, a_{n}\right\}$ of $a_{1} \otimes \cdots \otimes a_{n}$ in $\widehat{K}_{n}^{M}(A)$ is trivial.
5. Let A be regular, equicharacteristic, F its quotient field and $X=\operatorname{Spec} A$. Then the Gersten conjecture holds, i.e. the Gersten complex

$$
0 \rightarrow \widehat{K}_{n}^{M}(A) \rightarrow K_{n}^{M}(F) \rightarrow \oplus_{x \in X^{(1)}} K_{n-1}^{M}(k(x)) \rightarrow \cdots
$$

In general, the natural map

$$
\overline{\mathscr{K}}_{*}^{M}(X) \rightarrow \widehat{\mathscr{K}}_{*}^{M}(X)
$$

is not an isomorphism. For example, the improved Milnor K-theory is equal to the Quillen K-theory for any local ring $A, \widehat{K}_{2}^{M}(A)=K_{2}(A)$, which is not true in this generality for the usual Milnor K-theory. An example for this was given by Bruno Kahn in the Appendix to [?]. However, from the fact that $\widehat{\mathbb{K}}_{*}^{M}$ satisfies the Gersten conjecture, we can deduce a useful corollary.

Corollary 1.3.2. Let X be a smooth scheme with finite residue fields. Then

$$
\mathscr{K}_{*}^{M}=\widehat{\mathscr{K}}_{*}^{M}
$$

where \mathscr{K}_{*}^{M} is as in Definition 1.2.4.
Another important feature of the improved Milnor K-theory is that it is locally generated by symbols. In other words, it's elements satisfy the Steinberg relation. In fact Kerz shows the following theorem.

Theoreme 1.3.3. Let A be a local ring. Then the map

$$
K_{*}^{M}(A) \rightarrow \widehat{K}_{*}^{M}(A)
$$

is surjective.
Proof (IDEA): One can use the transfer map for extensions of local fields of degree 2 and 3 to reduce to the cases $n=2$ and $n=1$, whereof both are classical if one takes into account (1) of the list of properties above and that the improved Milnor K-theory is equal to the Quillen K-theory for any local ring A.

1.4 Some deeper properties associated to the Milnor K-sheaf

Let $S=$ Spec k for a perfect field k of positive characteristic p and X / k smooth. We know that the Milnor K-sheaf \mathscr{K}_{*}^{M} on X is p-torsion free (Izhboldin or Geisser-Levine) and logarithmic differential map

$$
d \log : \mathscr{K}^{M} / p^{n} \xrightarrow{\sim} W_{n} \Omega_{\log }^{r}
$$

is an isomorphism (shown by Bloch-Kato or Geisser-Levine).
Let R be an essentially smooth local ring over $W_{n}(k)$ and set $R_{n}=R / p^{n}$. Over Spec R we consider the decreasing filtration of the Milnor K-ring

$$
K_{r}^{M}(R) \supset U^{1} K_{r}^{M}(R) \supset U^{2} K_{r}^{M}(R) \supset \cdots \supset U^{i} K_{r}^{M}(R) \supset \cdots
$$

where $U^{i} K_{r}^{M}(R)$ is generated by elements of the form $\left\{1+p^{i} x, x_{2}, \ldots, x_{r}\right\}$ with $x \in R$ and $x_{i} \in R^{*}$. By definition $U^{1} K_{r}^{M}(R)$ is the kernel of the projection $K_{r}^{M}(R) \rightarrow K_{r}^{M}\left(R_{1}\right)$.

Lemma 1.4.1. The groups $U^{1} K_{r}^{M}(R)$ is p-primary torsion of finite exponent.
Proof: It is enough to show this for $r=2$, where one can pass to relative K-groups. The calculation here is then easier.

We will use the following theorem of Kurihara to relate Milnor K-theory and motivic cohomology of p-adic schemes.

Theoreme 1.4.2. For $p>2$ the map

$$
p x d \log y_{1} \wedge \ldots \wedge d \log y_{r-1} \mapsto\left\{\exp (p x), y_{1}, \ldots, y_{r-1}\right\}
$$

induces an isomorphism

$$
\operatorname{Exp}: p \Omega_{R_{n}}^{r-1} / p^{2} d \Omega_{R_{n}}^{r-2} \xrightarrow{\sim} U^{1} K_{r}^{M}\left(R_{n}\right)
$$

Proof: This is done in three steps. One first shows that the exponential map is well-defined on $p \Omega_{R_{n}}^{r-1}$. Then that it factors through the quotient. The last part is to show that it is an isomorphism.
$\mathbf{1}^{\text {st }}$ step. Kurihara shows that the morphism is well defined if $K_{r}^{M}(R)$ is replaced by its p-adic completion. As above, it is sufficient to show the claim for $r=2$. As mentioned before, $K_{2}^{M}\left(R_{1}\right)$ is p-tprsion free. Thus for any n

$$
0 \rightarrow U^{1} K_{2}^{M}(R) \otimes \mathbb{Z} / p^{n} \rightarrow K_{2}^{M}(R) \otimes \mathbb{Z} / p^{n} \rightarrow K_{2}^{M}\left(R_{1}\right) \otimes \mathbb{Z} / p^{n} \rightarrow 0
$$

is exact. For n large enough the lemma says that $U^{1} K_{2}^{M}(R) \otimes \mathbb{Z} / p^{n} \cong U^{1} K_{2}^{M}(R)$. Taking inverse limits in the exact sequence, we get that

$$
\begin{equation*}
U^{1} K_{2}^{M}(R) \rightarrow \widehat{K_{2}^{M}(R)} \tag{2}
\end{equation*}
$$

is injective, and we obtain the claim from Kurihara's result.
$\mathbf{2}^{\text {nd }}$ step. To show that the morphism factors through the quotient, we show that $\operatorname{Exp}\left(p^{2} d \Omega_{R}^{r-2}\right)=0$. Again wlog $r=2$. We use again the injectivity of (2) and the fact that the claim has been shown for $\widehat{K_{2}^{M}(R)}$ by Kurihara.
$3^{\text {rd }}$ step. To show that the exponential map on the quotient is an isomorphism, set $G_{r}=p \Omega_{R}^{r-1} / \Omega_{R}^{r-2}$ and define a filtration by

$$
U^{i} G_{r}=p^{i} \Omega_{R}^{r-1} / \Omega_{R}^{r-2}
$$

Kurihara shows that the graded pieces of this filtration are isomorphic to the graded pieces of $K_{r}^{M}(R)$. Therefore, the exponential map is an isomorphism.

The next interesting result is the relationship between Milnor K-theory and the motivic complex (resp. motivic cohomology). In fact it is now known that

$$
\mathscr{K}_{n}^{M}=\mathscr{H}^{n}(\mathbb{Z}(n))
$$

where the lefthand side is the Milnor K-sheaf and the righthand side is the motivic cohomology sheaf. This is sometimes called Beilinson's conjecture. It was shown by Kerz in [17]. The idea of the proof is as follows.

In [24] Suslin and Voevodsky show that the claim is true for a field F. Recall that $\mathrm{H}^{n, n}(X, \mathbb{Z}):=$ $\mathrm{H}_{\text {mot }}^{n}(X, \mathbb{Z}(n))=\mathbb{H}_{N i s}^{n}(X, \mathbb{Z}(n))$ where

$$
\mathbb{Z}(q)=C_{*} \mathbb{Z}_{t r}\left(\mathbb{G}_{m}^{\wedge q}\right)[-q]
$$

is a presheaf with transfers, obtained via a simplicial complex. Every n-tuple (a_{1}, \ldots, a_{n}) of elements in the base field F defines an F-rational point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{G}_{m}^{n}$. The class of it in $\mathrm{H}^{n, n}(F, \mathbb{Z})$ is denoted by $\left[a_{1}, \ldots, a_{n}\right]$. One shows that elements of the form $(a, 1-a)$ are mapped to zero, so this defines a morphism

$$
K_{n}^{M}(F) \rightarrow \mathrm{H}^{n, n}(F, \mathbb{Z})
$$

Suslin Voevodsky show that this is surjective and construct an iverse.
Furthermore, it is well-known, that motivic cohomology satisfies the Gersten conjecture. Kerz on the other hand shows, that the Milnor K-sheaf as well satisfies the Gersten conjecture. This leads to a commutative diagram

Since we have isomorphisms on the field level and both lines are exact, this shows, that the first vertical map is an isomorphism as well.

A similar reasoning leads to a Bloch formula

$$
\mathrm{H}^{n}\left(X, \mathscr{K}_{n}^{M}\right) \cong \mathrm{CH}^{n}(X)
$$

if X is refular, contains a field (Kerz states it for infinite residue fields, but with his improved Milnor K-theory it should be true also for finite residue fields).

2 The motivic procomplex

2.1 Definition and basic properties

Recall from two weeks ago the definition of motivic cohomology and the motivic complex. For X / k smooth, let $\mathbb{Z}_{t r}(X)=\mathscr{C}$ or $(-, X)$. This is a presheaf with transfers. The motivic complex

$$
M(X):=C_{*} \mathbb{Z}_{t r}(X)
$$

is the complex assiciated to the simplicial presheaf given by $U \mapsto \mathbb{Z}_{t r}\left(X \times \Delta^{\bullet}\right)$. We then define the Suslin-Voevodsky complex by

$$
\mathbb{Z}(r):=C_{*} \mathbb{Z}_{t r}\left(\mathbb{G}_{m}^{\wedge r}[-r] .\right.
$$

In sum one has

$$
\mathbb{Z}(r)^{i}(U)=\mathscr{C} \text { or }\left(U \times_{k} \Delta^{r-i}, \mathbb{G}_{m}^{\wedge r}\right)
$$

It is supported in degree $\leqslant r$. For a smooth scheme over $k, \mathbb{Z}_{X}(r)$ denotes the restriction $\mathfrak{Z}(r)$ to the small Nisnevich site of X.

Notation 2.1.1. Recall the notation from earlier sections. Let k be a perfect field of characteristic $p>0$ and $W=W(k)$ the ring of Witt vectors which is an adic ring with ideal of definition $I=(p)$. Let $X_{\bullet} \in \mathrm{Sch}_{W_{\bullet}}$ (a p-adic formal scheme over the Witt vectors). We denote $X_{n}=X_{\bullet} \otimes W_{n}(k)$. Then in particular $X_{1}=W \otimes_{W} k$ is its special fiber.

Forthermore recall $\mathfrak{S}_{X_{\bullet}}(r)=\operatorname{cone}\left(J(r) \Omega_{D_{\bullet}}^{\bullet} \xrightarrow{1-f_{r}} \Omega_{D_{\bullet}}^{\bullet}[-1]\right.$ is the syntomic complex of FontaineMessing.

We will $\mathbb{Z}_{X_{1}}(r)$ consider both as an object in the derived category $D\left(X_{1}\right)=D\left(X_{1}\right)_{N i s}$ And as a constant pro-complex in $D_{\text {pro }}\left(X_{1}\right)=D_{\text {pro }}\left(X_{1}\right)_{\text {Nis }}$. Using the euality

$$
\mathscr{H}^{r}(\mathbb{Z}(r))=\mathscr{K}_{r}^{M}
$$

we define a logarithm map

$$
d \log : \mathbb{Z}_{X_{1}}(r) \rightarrow \mathscr{H}\left(\mathbb{Z}_{X_{1}}(r)\right)[-r]=\mathscr{K}_{X_{1}, r}^{M}[-r] \xrightarrow{d \log } W_{\bullet} \Omega_{X_{1}, \log }^{r}[-r]
$$

in $D_{\text {pro }}\left(X_{1}\right)$. The second part of the map is an isomorphism, since the logarithmic differentials are generated by symbols. Recall that we have a map

$$
\Phi^{J}: \mathfrak{S}_{X \bullet}(r) \rightarrow W_{\bullet} \Omega_{X_{1}, \log }^{r}[-r]
$$

in $D_{\text {pro }}\left(X_{1}\right)$ that fits into an exact fundamental triangle.
Definition 2.1.2. Assume $p>r$. We define the motivic procomplex by

$$
\mathbb{Z}_{X \bullet}(r)=\operatorname{cone}\left(\mathfrak{S}_{X_{\bullet}}(r) \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\Phi^{J} \oplus(-\log)} W_{\bullet} \Omega_{X_{1}, \log }^{r}[-r]\right)[-1]
$$

as object of $D_{\text {pro }}\left(X_{1}\right)$.
After Beilinson-Bernstein-Deligne the cone is well defined up to unique isomorphism. We will prove some properties of the motivic pro-complex.

Proposition 2.1.3. $1 . \mathbb{Z}_{X \cdot}(0)=\mathbb{Z}$ is the constant sheaf in degree zero.
2. One has $\mathbb{Z}_{X_{\bullet}}(1)=\mathbb{G}_{m, X_{\bullet}}[-1]$.
3. The pro-complex $\mathbb{Z}_{X_{\bullet}}(r)$ is supported in cohomological degrees $\leqslant r$.
4. One has $\mathbb{Z}_{X \bullet}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z} / p^{\bullet}=\mathfrak{S}_{X_{\bullet}}(r)$ in $D_{\text {pro }}\left(X_{1}\right)$.
5. There is a Beilinson type formula $\left.\mathcal{H}^{r}(r)\right)=\mathscr{K}_{X_{\bullet}, r}^{M}$ in $\operatorname{Sh}_{\text {pro }}\left(X_{1}\right)$.
6. There is a canonical product structure

$$
\mathbb{Z}_{X \bullet}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z}_{X \cdot}\left(r^{\prime}\right) \rightarrow \mathbb{Z}_{X \cdot}\left(r+r^{\prime}\right)
$$

compatible with the product on the usual motivic complex over X_{1} and on the syntomic complex.
Proof: To show (1), one has $W_{\bullet} \Omega_{X_{1}, \log }^{0}=\mathbb{Z} / p^{\bullet}, \mathbb{Z}_{X_{1}}(0)=\mathbb{Z}$ and $\mathfrak{S}_{X \bullet}(0)=\mathbb{Z} / p^{\bullet}$. So the statement follows directly from the definition.

We show (3). There is a long exact sequence

$$
\ldots \rightarrow \mathcal{H}^{i}\left(\mathbb{Z}_{X \bullet}(r)\right) \rightarrow \mathcal{H}^{i}\left(\mathfrak{S}_{X \bullet}(r)\right) \oplus \mathcal{H}^{i}\left(\mathbb{Z}_{X_{1}}(r)\right) \rightarrow \mathcal{H}^{i}\left(W_{\bullet} \Omega_{X_{1}, \log }^{r}[-r]\right) \rightarrow \ldots
$$

where the second map is induced by $\Phi^{J} \oplus(-\log)$. We have seen earlier that $\mathfrak{S}_{X \cdot}(r)$ has support in $[1, r]$. (Beilinson-Soulé predicts the same for the motivic complex.) But as the $d \log$-mao is an epimorphism, this shows the claimed support for the motivic pro-complex.

To show (5). For $i=r$ we have a short exact sequence

$$
0 \rightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X_{\bullet}}(r)\right) \rightarrow \mathcal{H}^{r}\left(\mathfrak{S}_{X_{\bullet}}(r)\right) \oplus \mathcal{H}^{r}\left(\mathbb{Z}_{X_{1}}(r)\right) \xrightarrow{\Phi^{J} \oplus(-\log)} W_{\bullet} \Omega_{X_{1}, \log }^{r} \rightarrow 0
$$

The exact fundamental triangle from Theorem 4.4 gives an exact sequence

$$
0 \rightarrow p \Omega_{X_{\bullet}}^{r-1} / p^{2} d \Omega_{X_{\bullet}}^{r-2} \rightarrow \mathcal{H}^{r}\left(\mathfrak{S}_{X_{\bullet}}(r)\right) \xrightarrow{\Phi^{J}} W_{\bullet} \Omega_{X_{1}, \log }^{r} \rightarrow 0
$$

These two sequences induce a third exact sequence, which can be put into a commutative diagram

which is induced by the exponential map for the Milnor K-sheaf which we talked about earlier. The middle vertical map is Kato's regulator map.

For (2). The Beilinson-Soulé vanishing is clear for $r=1$. So from (3) which tells us about the cohomological support and (5) one obtains the formula in (2).

For (3). As $W_{n} \Omega_{X_{1}, \log }^{r}$ is a flat \mathbb{Z} / p^{n} module,

$$
W_{\bullet} \Omega_{X_{1}, \log }^{r} \otimes_{\mathbb{Z}}^{L} \mathbb{Z} / p^{\bullet}=W_{\bullet} \Omega_{X_{1}, \log }^{r}
$$

in $D_{\text {pro }}\left(X_{1}\right)$. By the fundamental triangel of Theorem 4.4 the same is true for the syntomic complex. By Geisser-Levine

$$
\mathbb{Z}_{X_{1}}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z} / p^{n}=W_{n} \Omega_{X_{1}, \log }^{r}[-r]
$$

so $\mathbb{Z}_{X_{\bullet}}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z} / p^{\bullet}=\mathfrak{S}_{X_{\bullet}}(r)$ in $D_{\text {pro }}\left(X_{1}\right)$.
For (6). The product structure follows from the product structure of the syntomic nad regular motivic complexes.

2.2 The motivic fundamental triangle

Now we come to the motivic fundamental triangle.

Proposition 2.2.1. One has a unique commutative diagram of exact triangles in $D_{\text {pro }}\left(X_{1}\right)$

where the bottom comes from the fundamental triangle from Theorem 4.4 and the maps in the right square are the canonical ones.

Proof: As the right square consists of the canonical maps, it is homotopy cartesian by definition. The existence of the commutative diagram is then a stnadard result about triangulated categories by Neeman.

For the uniqueness, one has to show that the first morhiism in the upper row

$$
p(r) \Omega_{X}^{\leqslant r-1}[-1] \rightarrow \mathbb{Z}_{X_{\bullet}}(r)
$$

is uniquely defined by the conditions of the proposition. This is also a standard result in triangulated categories by Beilinson-Bernstein-Deligne.

Corollary 2.2.2. For $Y_{\bullet}=X_{\bullet} \times \mathbb{P}^{m}$ one has a projective bundle formula:

$$
\bigoplus_{s=0}^{m} \mathrm{H}_{\text {cont }}^{r^{\prime}-2 s}\left(X_{1}, \mathbb{Z}_{X \cdot}(r-s)\right) \rightarrow \mathrm{H}_{\text {cont }}^{r^{\prime}}\left(Y_{1}, \mathbb{Z}_{Y_{\bullet}}(r)\right)
$$

is an isomorphism.
Proof: By the previous proposition one has to show the formula for the Suslin-Voevodsky motivic cohomology and for the Hodge cohomology. This has been done in [19] and Deligne/Grothendieck in SGA7 respectively.

References

[1] Grothendieck A., Dieudonné J.: Eléments de géométrie algébrique III: étude cohomologique des faisceaux cohérents.
[2] Berthelot P.: Cohomologie cristalline des schémas de caractéristique p>0. Lecture Notes in Mathematics 127, Springer-Verlag, (1974).
[3] Berthelot P., Ogus A.: Notes on crystalline cohomology. Math.Notes 21, Princeton University Press, (1978).
[4] Berthelot P., Ogus A.: F-isocrystals and the de Rham cohomology I. Inv.Math. 72, 159-199, (1983).
[5] Bloch S., Esnault H., Kerz M.: p-adic deformations of algebraic cycle classes. Preprint 2012, ArXiv:1203.2776v1.
[6] Chambert-Loir A.: Cohomologie cristalline: un survol. Exp.Math. 16, 336-382, (1998).
[7] DÉGLise F.: Introduction à la topologie de Nisnevich. http://perso.enslyon.fr/frederic.deglise/gdt.html, (1999).
[8] Deligne P.: Cristaux ordinaires et coordonnées canoniques. In algebraic Surfaces (Orsay 1976/78), L.N.M. 868, 80-137, Springer-Verlag, (1981).
[9] Emerton M.: A p-adic variational Hodge conjecture and modular forms with multiplication. Preprint 2012.
[10] Fontaine J.-M., Messing W.: p-adic periods and étale cohomology. Contemporary Math 87, 176207, (1987).
[11] Friedlander E.M., Suslin A., Voevodsky V.: Cycles, transfers and motivic homology theories. Annals of math. Studies 143, Princeton University Press, (2000).
[12] Gros M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mémoires de la S.M.F. 2^{e} série, tome 21, 1-87, (1985).
[13] Grothendieck A.: On the de Rham cohomology of algebraic varieties. Publ. math. I.H.E.S. 29, 95-103, (1966).
[14] Hartshorne R.: Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, (1977).
[15] Illusie L.: Grothendieck's existence theorem in formal geometry. In Grothendieck's Fga explained, B. Fantechi et al. eds, M.S.M. 123, 179-234, (2005).
[16] Jannsen U.: Continuous étale cohomology. Math. Ann. 280, 207-245, (1988).
[17] Kerz M.: The Gersten conjecture for Milnor K-theory. Invent. Math. 175, 1-33,(2009).
[18] Kerz M.: Milnor K-theory of local rings with finite residue fields. J. Algebraic Geom. 19, 173-191, (2010).
[19] Mazza C., Voevodsky V., Weibel V.: Lecture Notes on Motivic Cohomology. Clay Mathematics Monographs 2, A.M.s., (2006).
[20] Milne J.S.: Etale cohomology. Princeton Mathematical Series 33, Princton University Press, (1980).
[21] Milnor J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318-344, (1969/1970).
[22] Nisnevich Y.A.: The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory. In J.F. Jardine and V.P. Snaith. Algebraic K-theory: connections with geometry and topology. Proceedings of the NATO Advanced Study Institute held in Lake Louise, Alberta, December 7-11, 1987. NATO Advanced Science Institutes Series, C 279. Dordrecht: Kluwer Academic Publishers Group, 241-342, (1989).
[23] Rost M.: Chow Groups with Coefficients. Doc.Math.,1:No. 16, 319-393,(1996).
[24] Suslin A., Voevodsky V.: Bloch-Kato conjecture and motivic cohomology with finite coefficients. In The Arithmetic and Geometry of Algebraic Cycles, Nato Science Series, C 548, 117-189, (2002).
[25] Weibel V.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, (1994).

