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1 Milnor K-theory

In this section we recall the definition and basic properties of Milnor K-theory for fields and rings.
Following [17] we give a definition for the Milnor K-sheaves and state the Gersten conjecture in equi-
characteristic.

1.1 Milnor K-theory for fields

We start by recalling the definition of the Milnor K-groups for fields in generators and relations along

with some properties.
Let F be a field and T*(F) the tensor algebra of F. Let I be the two-sided homogenous ideal in T (F)
generated by the elements a ® (1 — a) with a,1 —a € F*.

Definition 1.1.1. The Milnor K-groups of the field F' are defined to be
KM(F):=T"(F)/I.

They form a graded ring KM(F) = T*(F)/I. The class of a1 ® --- ® a, in KM(F) is denoted by
{a1,...,a,}. Elements of I are usually called Steinberg relations.

The following basic properties are standard.

KM(F) =17, KM(F) = F*,

For a field extension F' < E, = there is a natural morphism KM (F) — KM (E).

It is an anticommutative ring.
e For a,a; € F* with a; + -sa, =1o0r 0

{a,—a} = {a,—1}
{al,...,an} = 0

1.2 The theory for local rings with infinite residue fields

We briefly recall Kerz’s discussion of Milnor K-theory in the case when the residue fields have “enough”
elements (see [17]).

Definition 1.2.1. For a regular semi-local ring R over a field k& the Milnor K-groups are given by

EM(R)=Ker | @ KM (k) 2 @ KM(k(y))

zeR(0) yeRM)
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In an attempt to generalise the definition of the Milnor K-ring for fields to arbitrary unital rings, one
can define a graded ring in the following way:

Definition 1.2.2. For a unital ring R let

K. (R) = T*(R)/J

where J is the two-sided homogeneous ideal generated by the Steinberg relations and elements of the form
a® (—a).
If R is a regular semi-local ring over a field, there is a canonical homomorphism of groups

K

?

(R) = K (R)

which is surjective if the base field is infinite (or sufficiently large, as in [17]). Kerz proves that in this
case the additional relation {a, —a} = 0 in the definition is obsolete and that the usual relations hold.
We want to globalise this to schemes.

Definition 1.2.3. Define 71” to be the Zariski sheaf associated to the presheaf
—M
U~ K, (I(U,0y))
on the category of schemes.

Inspired by Definition 1.2.1 one defines the following.

Definition 1.2.4. Let # " be the sheaf

UrsKer | @ iweKM(k(2) % @ iy KM (k(y))
zeU ) yeU

on the big Zariski site of regular varieties (schemes of finite type) over a field k, where i, is the embedding
of a point x in U.

One part of the Gersten conjecture for Milnor K-theory is to show that these two definitions coincide.
Kato constructed a Gersten complex of Zariski sheaves for Milnor K-theory of a scheme X

0= 724 - @ inn ) (K()) = @ iy KM (K(y)) — - - (1)

ze X (0) yeXm

In [23] Rost gives a proof that this sequence is exact if X is regular and of algebraic type over
an arbitrary field k except possibly at the first two places. Exactness at the second place was shown
independently by Gabber and Elbaz-Vincent/Miiller-Stach. Finally Kerz proved that the Gersten complex
is exact at the first place for X a regular scheme over a field, such that all residue fields are big enough.

In particular, this shows:

Corollary 1.2.5. Let X be a regular scheme of dimension n over an infinite field. Then

M _ M

T

1.3 The theory for local rings with finite residue fields

As Kerz points out in [18], the Gersten conjecture does not hold in general if we use the same construction
of Milnor K-theory for local rings with finite residue fields.

Let & be the category of abelian sheaves on the big Zariski site of schemes and &% the full subcategory
of sheaves that admit a transfer (or norm) map in the sense of Kerz [18]. Furthermore, let GT° be the full
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subcategory of sheaves in & which admit norms as described if we restrict the system to local A-algebras

A’ with infinite residue fields. An example would be the Milnor K-sheaf 771;4 for every n.

A main result in Kerz’s article [18] is that for a continuous functor F' € GT° there exists a continuous
functor F' € &T and a natural transformation satisfying a universal property. Namely, for an arbitrary
continuous functor G € GT together with a natural transformation ' — G there is a unique natural
transformation F' — G making the diagram

F————F

/
/
7 3
»
G

commutative. Moreover, for a local ring with infinite residue field, the two functors coincide. It is
constructed using rational function rings.
As a corollary we obtain an “improved” Milnor K-theory, taking into account that J#, is in GZ°
and continuous.
—M

Corollary 1.3.1. For every n € N there ezists a universal continuous functor ¢, € 6% and a natural
transformation

—M —~M

H o, =,
such that for any continuous G € ¥ together with a natural transformation %, — G there is a unique

—~M
natural transformation 2, — G such that the diagram

commautes.
In the affine case this is denoted by R
KM KM
We list some of the important properties, proved in [18, Proposition 10].
1. Let (A, m) be a local ring. Then KM (A) = AX.
2. IA(iW (A) has a natural structure as graded commutative ring.

3. The ring [A(,fW(A) is skew symmetric.

4. For ay,...,a, € A* with a; + --- 4+ a,, = 1 the image {a1,...,a,} of a1 ® --- ® a, in I?%(A) is
trivial.

5. Let A be regular, equicharacteristic, F' its quotient field and X = Spec A. Then the Gersten
conjecture holds, i.e. the Gersten complex

0 = Kp'(A) = K)(F) = ©pexan KoLy (k(z)) = -

In general, the natural map
— —~M
X)) = A (X)
is not an isomorphism. For example, the improved Milnor K-theory is equal to the Quillen K-theory for
any local ring A, K} (A) = K,(A), which is not true in this generality for the usual Milnor K-theory.

—~M
An example for this was given by Bruno Kahn in the Appendix to [?]. However, from the fact that J¢",
satisfies the Gersten conjecture, we can deduce a useful corollary.
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Corollary 1.3.2. Let X be a smooth scheme with finite residue fields. Then

M 7

where Ji/i\/[ is as in Definition 1.2.4.

Another important feature of the improved Milnor K-theory is that it is locally generated by symbols.
In other words, it’s elements satisfy the Steinberg relation. In fact Kerz shows the following theorem.

Theoreme 1.3.3. Let A be a local ring. Then the map
KM(A) = K (4)
1§ surjective.

PROOF (IDEA): One can use the transfer map for extensions of local fields of degree 2 and 3 to reduce
to the cases n = 2 and n = 1, whereof both are classical if one takes into account (1) of the list of properties
above and that the improved Milnor K-theory is equal to the Quillen K-theory for any local ring A. O

1.4 Some deeper properties associated to the Milnor K-sheaf

Let S = Speck for a perfect field k of positive characteristic p and X/k smooth. We know that the Milnor
K-sheaf #™ on X is p-torsion free (Izhboldin or Geisser-Levine) and logarithmic differential map

dlog : ™M [p" = WL,

is an isomorphism (shown by Bloch-Kato or Geisser-Levine).
Let R be an essentially smooth local ring over W, (k) and set R,, = R/p™. Over Spec R we consider
the decreasing filtration of the Milnor K-ring

KM(R) > U'KM(R) > UKM(R) > --- DU'KM(R) > ---

where U KM (R) is generated by elements of the form {1 + p'z,zs,...,,} with x € R and z; € R*. By
definition UK (R) is the kernel of the projection KM (R) — KM (R,).
Lemma 1.4.1. The groups UK (R) is p-primary torsion of finite exponent.

PRrOOF: It is enough to show this for r = 2, where one can pass to relative K-groups. The calculation
here is then easier. a

We will use the following theorem of Kurihara to relate Milnor K-theory and motivic cohomology of
p-adic schemes.

Theoreme 1.4.2. For p > 2 the map

prdlogys A ... Adlogyr—1 — {exp(px),y1,...,yr—1}

induces an isomorphism
Exp : pQf; ' /p?dQ 2 = U KM (R,).

PRrROOF: This is done in three steps. One first shows that the exponential map is well-defined on pQ?{nl.
Then that it factors through the quotient. The last part is to show that it is an isomorphism.

15t step. Kurihara shows that the morphism is well defined if KM (R) is replaced by its p-adic
completion. As above, it is sufficient to show the claim for 7 = 2. As mentioned before, KM (R,) is
p-tprsion free. Thus for any n

0= U'KM(R)QZ/p" - KM(R)QZ /p" — K (R) @ Z [p™ — 0
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is exact. For n large enough the lemma says that U' K} (R) ® Z /p™ = U' K} (R). Taking inverse limits
in the exact sequence, we get that

UK (R) - KM (R) 2)

is injective, and we obtain the claim from Kurihara’s result.

27d step. To show that the morphism factors through the quotient, we show that Exp(p?dQ}; %) = 0.
Again wlog r = 2. We use again the injectivity of (2) and the fact that the claim has been shown for
Kj/[(\R) by Kurihara.

3™d step. To show that the exponential map on the quotient is an isomorphism, set G, = pQ}fl / Q?{z
and define a filtration by

U'G, =p' QU /52

Kurihara shows that the graded pieces of this filtration are isomorphic to the graded pieces of KM (R).
Therefore, the exponential map is an isomorphism. a

The next interesting result is the relationship between Milnor K-theory and the motivic complex (resp.
motivic cohomology). In fact it is now known that

H = A (L))

where the lefthand side is the Milnor K-sheaf and the righthand side is the motivic cohomology sheaf.
This is sometimes called Beilinson’s conjecture. It was shown by Kerz in [17]. The idea of the proof is as
follows.

In [24] Suslin and Voevodsky show that the claim is true for a field F'. Recall that H""(X,Z) :=
H 0t (X, Z(n)) = Hiy5 (X, Z(n)) where

Z(q) = C. Ly (G [—q]

is a presheaf with transfers, obtained via a simplicial complex. Every n-tuple (a1, ...,a,) of elements in
the base field F defines an F-rational point (ay,...,a,) € Gl,,. The class of it in H""(F,Z) is denoted by
[a1,...,a,]. One shows that elements of the form (a,1—a) are mapped to zero, so this defines a morphism

KM(F) = H""(F,Z).

Suslin Voevodsky show that this is surjective and construct an iverse.

Furthermore, it is well-known, that motivic cohomology satisfies the Gersten conjecture. Kerz on
the other hand shows, that the Milnor K-sheaf as well satisfies the Gersten conjecture. This leads to a
commutative diagram

0——= A |y ——— Brexo KM (2)

| |

0 ——= A" (Z(n))| x — Spexo H'(2,Z(n)) —

X

Since we have isomorphisms on the field level and both lines are exact, this shows, that the first vertical
map is an isomorphism as well.
A similar reasoning leads to a Bloch formula

H™ (X, M) = CH"(X)

if X is refular, contains a field (Kerz states it for infinite residue fields, but with his improved Milnor
K-theory it should be true also for finite residue fields).
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2 The motivic procomplex

2.1 Definition and basic properties

Recall from two weeks ago the definition of motivic cohomology and the motivic complex. For X/k
smooth, let Z;,(X) = €or(—, X). This is a presheaf with transfers. The motivic complex

M(X) = C, Zi(X)

is the complex assiciated to the simplicial presheaf given by U — Z;.(X x A®). We then define the
Suslin-Voevodsky complex by
Z(r) := Cy L (GL [—7].

In sum one has _ _
Z(r)"(U) = Cor(U xj A", G)).

It is supported in degree < r. For a smooth scheme over k, Zx (r) denotes the restriction of Z(r) to the
small Nisnevich site of X.

Notation 2.1.1. Recall the notation from earlier sections. Let k& be a perfect field of characteristic p > 0
and W = W (k) the ring of Witt vectors which is an adic ring with ideal of definition I = (p). Let
Xo € Schy, (a p-adic formal scheme over the Witt vectors). We denote X,, = X, ® W, (k). Then in

particular X; = W @ k is its special fiber.
Forthermore recall &x, (r) = cone(J(r)Q}, i Q%.[—1] is the syntomic complex of Fontaine-
Messing.

We will Zx, (r) consider both as an object in the derived category D(X;) = D(X1)nis And as a
constant pro-complex in Dp,o(X1) = Dpro(X1)nis- Using the euality

HT(L(r)) =)
we define a logarithm map
dlog : Zx, (r) = H(Zix, (r)[=r] = AN [-1] T2 WOk, ogl—]

in Dpro(X1). The second part of the map is an isomorphism, since the logarithmic differentials are
generated by symbols. Recall that we have a map

7 Sx, (1) = Wallx, 1og[—7]
in Dpro(X1) that fits into an exact fundamental triangle.
Definition 2.1.2. Assume p > r. We define the motivic procomplex by

J — 10
Zx.(r) = cone(Gx, (r) ® Zx, (r) 2218,

WOQTXl,log[ir])[il}
as object of Dy,o(X7).

After Beilinson-Bernstein-Deligne the cone is well defined up to unique isomorphism. We will prove
some properties of the motivic pro-complex.

Proposition 2.1.3. 1. Zx,(0) = Z is the constant sheaf in degree zero.
2. One has Zx,(1) = Gy, x, [—1].
3. The pro-complex Zx,(r) is supported in cohomological degrees < r.

4. One has Zx,(r) ®£ Z[p* =6&x,(r) in Dpo(X1).
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5. There is a Beilinson type formula H"(r)) = Ji’)]\?hr in Shyo(X1).
6. There is a canonical product structure
Zx,(r)®% Zx,(r') = Zx,(r +1')
compatible with the product on the usual motivic complex over X1 and on the syntomic complex.

ProOF: To show (1), one has WeQ%, 1., = Z /p*, Zx,(0) = Z and &x,(0) = Z /p*. So the statement
follows directly from the definition.
We show (3). There is a long exact sequence

oo H(Zx, (1) = H(6x,(r) @ H (Zx, (1) = H (Wl 1ogl=7]) = .

where the second map is induced by ®7 @ (—log). We have seen earlier that & x, (r) has support in [1,7].
(Beilinson-Soulé predicts the same for the motivic complex.) But as the dlog-mao is an epimorphism, this
shows the claimed support for the motivic pro-complex.

To show (5). For i = r we have a short exact sequence

&' @ (- log)
_—

0—>H (Zx,(r)) = H (6x,(r) @H (Zx,(r)) Wed, 10 — 0

log

The exact fundamental triangle from Theorem 4.4 gives an exact sequence

J
0— pQS(:I/p2dQS{.2 — H" (&x,(r)) 2, Wels, 1og = 0

These two sequences induce a third exact sequence, which can be put into a commutative diagram

0 ——p, /PPN —— HT(Zx, (1)) —= H' (Zx, (1)) —>0

| -

0 ——pQ /PPN ——— AN, > K, >0

which is induced by the exponential map for the Milnor K-sheaf which we talked about earlier. The
middle vertical map is Kato’s regulator map.

For (2). The Beilinson-Soulé vanishing is clear for » = 1. So from (3) which tells us about the
cohomological support and (5) one obtains the formula in (2).

For (3). As W, Q% ., is a flat Z /p" module,

WoQSﬁ,Iog ®£ Z[p* = W'QTXthg

in Dp,o(X1). By the fundamental triangel of Theorem 4.4 the same is true for the syntomic complex. By
Geisser-Levine
ZXI (T) ®IZ; Z/pn = WnQSﬁ,Iog[ir]

s0 Zx,(r) @L Z [p®* = &x,(r) in Dpro(X1).
For (6). The product structure follows from the product structure of the syntomic nad regular motivic
complexes. |

2.2 The motivic fundamental triangle

Now we come to the motivic fundamental triangle.
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Proposition 2.2.1. One has a unique commutative diagram of exact triangles in Dp,,(X1)

p(T)Qf(f[—l] ——Zx,(r) ———>Zx,(r) ——— -

|

p(T)Q§(7. [_1] — GX. (’I’) — W'QTXLlog[_T] —_—

where the bottom comes from the fundamental triangle from Theorem 4.4 and the maps in the right square
are the canonical ones.

PROOF: As the right square consists of the canonical maps, it is homotopy cartesian by definition. The
existence of the commutative diagram is then a stnadard result about triangulated categories by Neeman.
For the uniqueness, one has to show that the first morhiism in the upper row

p(r)QX, 1] = Zx, (r)

is uniquely defined by the conditions of the proposition. This is also a standard result in triangulated
categories by Beilinson-Bernstein-Deligne. a

Corollary 2.2.2. For Y, = X, x P one has a projective bundle formula:

P UL (X1, Zx, (r = ) = Hip (Y1, Zy, (1)
s=0
18 an tsomorphism.

PrOOF: By the previous proposition one has to show the formula for the Suslin-Voevodsky motivic
cohomology and for the Hodge cohomology. This has been done in [19] and Deligne/Grothendieck in
SGAT respectively. m]
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