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Recall that we want to prove that for k a perfect �eld of positive characteristic p, X/W a smooth projective
scheme with closed �ber X1 with dimX1 = d and p > d + 6, and for ξ1 ∈ K0(X1)Q the following are
equivalent:

1. ξ1 is of Hodge type (i.e. Φ−1 ◦ ch(ξ1) ∈ ⊕rF
r H2r

dR(X/S)).

2. There is ξ̂ ∈ lim←−K0(Xn)Q such that ξ̂
∣∣
X1

= ξ1 ∈ K0(X1)Q.

To this e�ect, we considered the following diagram:

⊕r6d CHr
cont(X•)Q // ⊕r6d CHr(X1)Q

Ob// ⊕r6d H2r
cont(X1, p(r)Ω

<r)

Kcont
0 (X•)Q

Γ

OO

����
lim←−K0(Xn)Q // K0(X1)Q

?�

OOOO
(1)

where the top sequence is exact.
This shows, that an element ξ1 ∈ K0(X1)Q can be lifted if and only the associated element in the Chow
groups can be lifted, and this is controlled by the obstruction map. Now we have to link the behaviour of
this obstruction map to the property of being of Hodge type. This is our goal today.
For this part, we assume that X1/k is proper.

1 The obstruction sequence

We have already seen how to construct continuous cohomology groups. As "usual" Chow groups can be
given in terms of motivic cohomology as

CHr(X) = H2 r(X,Z(r))

we copy this to de�ne continuous Chow groups.

De�nition 1.1. The continuous Chow group of X• ∈ SmW• is given by

CHr
cont(X•) := H2r

cont(X1,ZX•(r))

where Z•(r) is the motivic procomplex.
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We have established the so-called motivic fundamental triangle in Dpro(X1)

p(r)Ω<r
X•

[−1] // ZX•(r)

��

// ZX1
(r) //

d log

��

· · ·

p(r)Ω<r
X•

[−1] // SX•(r) // W•Ωr
X1,log[−r] // · · ·

Applying the continuous cohomology functor to the upper exact triangle gives rise to the exact obstruction
sequence

CHr
cont(X•)→ CHr(X1)

Ob−−→ H2r
cont(X1, p(r)Ω

<r
X•

). (2)

The idea now is to compare the image of a cycle ξ1 ∈ CHr(X1) under the obstruction map Ob to its
crystalline cycle class.

Remark 1.2. In order to tie this in with a possible algebraisation, we note, that there is an exact sequence

0→
1

lim←−H2r−1(X1,ZXn
(r))→ CHr

cont(X•)→ lim←−H2r(X1,ZXn
(r))→ 0

In particular, for r = 1 we have seen that by de�nition ZX•(1) = Gm,X• [−1] and lim←−
1 H1(X1,Gm,Xn

)
vanishes. Thus we obtain an isomorphism

CH1
cont(X•)

∼−→ lim←−Pic(Xn)

If X is the p-adic formal scheme associated to a smooth projective scheme X/W there is an algebraisation
isomorphism

Pic(X)
∼−→ lim←−Pic(Xn)

so if we can lift a cycle to the continuous Chow group, we can algebrais it. Unfortunately an analogue for
higher degrees is unknown.

2 Crystalline cycle classes

Crystalline cycle classes were constructed by Gros using the logarithmic di�erential morphism

d log ◦ [−] : K M
r →W•Ωr

log.

For a closed integral subscheme Y ⊂ X1 of codimension r, he shows a purity statement

Hj
Y (X,Wnω

j
X1,log) = Hj+1

Y (X,WnΩj
X1,log) = 0

for j < r. Via the long exact excision sequence for cohomology, this gives rise to a morphism

Z ·[Y ] = Hr
Y (X1,K

M
r )

d log−−−→ Z /p• · [Y ] = Hr
Y (X1,W•Ωr

X1,log).

The image of [Y ] in the cohomology without supports is the cycle class of Y . By linearity this can be
extended to a cycle class map

CHr(X1)→ Hr
cont(X1,W•Ωr

log).

An easier way to obtain the cycle class map uses Gersten resolution of the Milnor K-sheaf. In [17] Kerz
shows a Bloch formula for the Milnor K-sheaf

CHr(X1) = Hr(X1,K
M
r ),

for schemes with in�nite residue �elds. This is done by comparing the Gerstne resolution of the Chow
group, with the Gersten resolution established by Kerz for the Milnor K-sheaf. Then one makes use of
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the fact that the Bloch formula is known for �elds. After [?, Kerz3]his can be generalised to schemes with
�nite residue �elds. Then the log-di�erential morphism of pro-sheaves induces again a map

CHr(X1) = Hr(X1,K
M
r )→ Hr

cont(X1,W•Ωr
log).

Now we recall that there is a natural map of procomplexes over X1

W•Ωr
log[−r]→W•Ω>r → q(r)W•Ω•, (3)

where q(r)W•Ω• = pr−1VW• O → pr−2VW•Ω1 → · · · → pVW•Ωr−2 → VW•Ωr−1 → W•Ωr → · · · is the
shifted de Rham-Witt complex.

De�nition 2.1. For ξ ∈ CHr(X1) we de�ne the re�ned crystalline cycle class

c(ξ) ∈ H2r
cont(X1, q(r)W•Ω•)

via the morphism of pro-sheaf complexes (3). The crystalline cycle class of ξ is the image of c(ξ) in
H2r

cont(X1,W•Ω•). It is denoted by ccris(ξ).

3 Cycle classes of Hodge type

Recall that we established comparison isomorphisms in the derived Nisnevich category over X1

q(r)W•Ω•
X1

∼= p(r)Ω•
X•

W•Ω•
X1

∼= Ω•
X•
,

Applying the continuous cohomology functor, we may identify

Hi
cont(X1, q(r)W•Ω•) = Hi

cont(X1, p(r)Ω
•
X•

)

Hi
cont(X1,W•Ω•) = Hi

cont(X1,Ω
•
X•

).

Now we can say, what it means for a cycle to be of Hodge type in this context.

De�nition 3.1. 1. The crystalline cycle class of ξ is of Hodge type if and only if ccris(ξ) lies in the

image of Hi
cont(X1,Ω

>r
X•

) in H2r
cont(X1,Ω

•
X•

).

2. The re�ned crystalline cycle class of ξ is of Hodge type if and only if c(ξ) lies in the image of

Hi
cont(X1,Ω

>r
X•

) in H2r
cont(X1, p(r)Ω

•
X•

).

3. The crystalline cycle class of ξ is of Hodge type modula torsion if and only if ccris(ξ)⊗Q lies in the

image of Hi
cont(X1,Ω

>r
X•

)⊗Q in H2r
cont(X1,Ω

•
X•

)⊗Q.

The de�nition used in the original theorem which we want to prove is:

4. An element ξ1 ∈ K0(X1)Q is of Hodge type if and only if

Φ−1 ◦ ch(ξ1) ∈
⊕
r

F r H2r
dR(X/W )

where Φ is the comparison morphism between de Rham and crystalline cohomology and ch is the
crystalline Chern character de�ned by Gros.

As rationally we have an isomorphism

K0(X1)Q ∼= ⊕CHr(X1)Q

and moreover, the crystalline Chenr character on K0(X1) and the crystalline cycle classes on the Chow
groups CHr(X1) are compatible (due to the fact that both are constructed via the logarithmic di�erential
map), we see, that the two de�nitions of Hodge type on the one hand for the K-group and on the other
hand for the Chow groups are equivalent.
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Remark 3.2. 1. By degeneration of the Hodge-de Rham spectral sequence up to torsion, the map
H2r

cont(X1,Ω
>r
X•

)⊗Q→ H2r
cont(X1,Ω

•
X•

)⊗Q is injective.

2. If for all a, b ∈ N Hb
cont(X1,Ω

b
X•

) is torsion free as W (k-module, then the composition

H2r
cont(X1,Ω

>r
X•

)→ H2r
cont(X1, p(r)Ω

•
X•

)→ H2r
cont(X1,Ω

•
X•

)

is injective, and so is in particular th left morphism.

3. The map H2r(X1, p(r)Ω
•
X•

) ⊗ Q → H2r
cont(X1,Ω

•
X•

) ⊗ Q is an isomorphism. This statement will be
important for the proof of the main theorem of this section.

4 The Hodge obstruction

We come now to prove one of the two main ingredients for the main theorem of the paper.

Theoreme 4.1. Let X•/W• be a smooth projective p-adic formal scheme. Let ξ1 ∈ CHr(X1) be an

algebraic cycle class. Then

1. the re�ned cycle class c(ξ1) ∈ H2r
cont(X1, q(r)W•Ω•) = H2r

cont(X1, p(r)Ω
•
X•

) is of Hodge type i� and

only if ξ1 lies in the image of the restirction map CHr
cont(X•)→ CHr(X1).

2. the crystalline class ccris(ξ1) ∈ H2r
cont(X1,W•Ω•) = H2r

cont(X1,Ω
•
X•

) id of Hodge type modulo torsion

if and only if ξ ⊗Q lies in the image of the restriction map CHr
cont(X•)⊗Q→ CHr(X1)⊗Q.

Proof: Part 1. The exact obstruction sequence (2) from above can be extended by the re�ned crystalline
cycle class map to a commutative diagram

CHr
cont(X•) //

c

��

CHr(X1)
Ob //

c

��

H2r
cont(X1, p(r)Ω

<r
X•

)

H2r
cont(X1, p(r)Ω

>r
X•

) // H2r
cont(X1, p(r)Ω

•
X•

) // H2r
cont(X1, p(r)Ω

<r
X•

)

with exact rows. It is clear by de�nition that the left square commutes. For the right square, recall that
the morphism

α : W•Ωr
X1,log[−r]→ p(r)Ω<r

X•

which induces the connecting morphism in the exact triangle is equal to the composition

β : W•Ωr
X1,log[−r]→W•Ω>r

X1
→ q(r)W•Ω•

X1
→ p(r)Ω•

X•
→ p(r)Ω<r

X•

which corresponds to the lower left path in the square in question. Then a diagram chase shows the claim.
Part 2. This follows directly from Part 1 if we bear in mind that H2 rcont(X1, p(r)Ω

•) and H2r
cont(X1,Ω

•
X•

)
are rationally isomorphic. 2

One question remains:

Question 4.2. Where in this discussion was it crucial that we restricted ourselves to X1 being proper
and how does one generalise this again then?
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