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1 Prelimiaries

1.1 The étale and Nisnevich site

We will brie�y recall the small étale and Nisneviche site of a scheme X.

De�nition 1.1.1. A morphism of schemes f : Y → X is étale if it is �at and unrami�ed (in particular it
is of �nite type). It is called completey decomposed, if in addition for every point x ∈ X there is a point
y ∈ f−1(x) such that the induced morphism on residue �elds k(x)→ k(y) is an isomorphism.
A family of morphisms {fi : Xi → X}i∈I form a Nisnevich cover if the fi are étale, and for each x ∈ X
there is i ∈ I such that fi is completely decomposed at x.

Thus any Zariski covering is Nisnevich and any Nisnevich cover is étale. The property of being completely
decomposed is stable under pull-backs: if in a cartesian square

V //

g

��

U

f

��
Y

α // X

the morphism f : U → X is completely decomposed at x ∈ X then g : V → Y is completely decomposed
at y = α−1(x). From this we deduce the following. Let for a scheme X and C be a full subcategory of
Sch /X such that the pull-back in Sch /X of the diagram in C

U

p

��
Y // X

where p is étale, is again in C , then the Nisnevich coverings form a basis for a (Grothendieck) topology on
C . The Nisnevich topology is �ner than the Zariski topology but coarser than the étale topology. As in
the étale case, we can de�ne the small and the big Nisnevich site of a noetherian scheme X. We denote the
small étale resp. Nisnevich site of x by Xét/Nisn. The local rings of a scheme with its Nisnevich topology
are Henselian rings, while the local rings with respect to the étale topology are strictly Henselian rings.
There is a morphism of sites

ε : Xét → XNis.

Some properties:

1. Subcanonical. The Nisnevich topology is (as the étale and Zariski topologies) sub-canonical: every
representable pre-sheaf is in fact a sheaf.
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2. Strati�cation. Let {fi : Xi → X}i∈I be a Nisnevich cover. Then there is a strictly decreasing
sequence of closed subsets

X ) Zj0 ) · · · ) Zjn+1
= ∅

such that {j0, . . . , jn} ⊂ I and for each m fjm
∣∣
Zjm−Zjm+1

admits a section.

De�nition 1.1.2. A cartesian diagram

U × V //

��

V

p

��
U

i // X

such that i is an open immersion, p is étale and for Z = X−U p induces an isomorphism p−1(Z)→ Z
is called distinguished or elementary. Hence we call the covering family {i, p} of X elementary.

The strati�cation lemma implies that the elementary coverings form a basis of the Nisnevich topology.
To see if a presheaf is a sheaf it satis�es therefore to verify for the elementary coverings.

3. Mayer-Vietoris. Furthermore, there is a Mayer-Vietoris sequence for an elementary covering.

4. Descent spectral sequence. One of the key properties of the Nisnevich site is the existence of a
descent (local-to-global) spectral sequence for the Quillen K-theory of coherent sheaves.

5. Cohomological dimension. Let X be noetherian, quasi-separated of dimension d. Then for any
abelian sheaf F on X

Hn
Nis(X,F) = 0 if n > d.

1.2 Some notions from homological algebra

The following is not very precise. For a small site S let

1. Sh(S) be the category of sheaves of abelian groups on S.

2. C(S) be the category of unbounded complexes.

3. Shpro(S) be the category of pro-systems in Sh(S).

4. Cpro(S) be the category of pro-systems in C(S).

5. Kpro(S) the homotopy category of Cpro(S).

6. Dpro(S) the Verdier quotient of Kpro(S).

The idea in general is: one starts with a category of complexes. It is su�cient to consider them up
to homotopy (as we want to go to cohomology in the end). And then invert by brute force the quasi-
isomorphisms. As a consequence one obtains an additive category. However, in general it is not abelian.
Therefore on has to replace the concept of short exact sequences by exact triangles. A category with a
translation functor and a clasS of triangles (called distinguished) which satis�ey four basic properties is
called a triangulated category. The homotopy and derived category are both triangulated.

We denote furthermore by S(S) the closed simplicial model category of simplicial presheaves on S, where
co�brations are injective morphisms of pre-sheaves and weak equivalences are those maps which induce
isomorphisms on homotopy sheaves. We endow the category of unbounded complexes C(S) as well with a
closed simplicial model structure. Similar to the de�nitions above we have categories Spro(S) and Cpro(S).
The structures are called pro-model structures. They are due to Isaksen. We allow only N as index
category, so only countable inverse limits and �nite direct limits exist.

For a scheme X we let Spro(X)ét/Nis = Spro(Xét/Nis) etc.
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1.3 Adic rings/spaces and formal schemes

An adic noetherian ring R is a noetherian ring which has a topological basis generated by neighbourhoods
of zero {In}n∈N where I ⊂ R is an ideal, such that R as a topological space is Hausdor� and complete.
Such an ideal is called an ideal of de�nition. An ideal J ⊂ R is an ideal of de�nitino i� it is open and its
poers tend to zero. For the choice of an ideal of de�nition I we call the associated topology I-adic, and
the descending �ltration de�ned by powers of I is the I-adic �ltration.

For an adic noetherian ring R, we can de�ne its formal spectrum Spf R. For an ideal of de�nition I, e
de�ne

Spf R = colim Spec(R/In).

As I is nilpotent, the underlying topological space is SpecR/I, and it contains all closed points of SpecR.
The structure sheaf is given by

OR = lim←−OR/In ,

where the limit is taken in the category of topological rings. The formal spectrum depends only on the
underlying ring R and not on the choice of an ideal of de�nition. This notion can be globalised to formal
schemes.

1.4 The de Rham-Witt complex

The de Rham-Witt complex is a shef on a scheme over a perfect �eld of characteristic p (or more generally
of a Z(p)-algebra. It provides a complex which is explicit and (relatively) computable. Its hypercohomology
gives the crystalline cohomology. It is a pro-system of di�erentially graded algebras.

The de Rham-Witt complex over a scheme X of characteristic p can be de�ned as the initial object of
the category of Witt complexes over X. It is a universal object in the category of projective systems
of di�erentially graded algebras the extends the sheaf of Witt vectors and satis�es certain relations ith
respect to Frobenius and Verschiebung. It is uniquely de�ned by the following properties:

1. In degree zero it is isomorphic to the ring of Witt vectors W·Ω
0
X = W·OX .

2. For x ∈WnΩi and y ∈WnΩj it satis�es the relation V (xdy) = (V x)dV y.

3. For n > 1, x ∈W1Ω0 and y ∈WnΩ0 one has (V y)dx = V (xp−1)dV x.

It is constructed inductively as quotients of de Rham complexes over Wn OX devided by the obvious
relations (only involving Verschiebung V and restriction R). Then one checks that it satis�es also the
desired properties ith respect to the induced Frobenius map.

2 Cristalline and de Rham cohomology

Let k be a perfect �eld of characteristic p > 0 and S = W (k) the ring of Witt vectors which is an adic
ring with ideal of de�nition I = (p). Let X· ∈ SchS· (a p-adic formal scheme over the Witt vectors). We
denote Xn = X· ⊗Wn(k). Then in particular X1 is its special �ber. Note that the étale/Nisnevich sites
of all Xi are isomorphic.

De�nition 2.0.1. 1. Let
Ω∗X·
∈ Cpro(X1)ét/Nis

be the pro-system of de Rham complexes Ω∗Xn/Wn(k).

2. Let
W·Ω

∗
X1
∈ Cpro(X1)ét/Nis

the pro-system of de Rham-Witt complexes.
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For n ∈ N denote
d log : O∗X →WnΩ1

X

the morphism of abelian sheaves de�ned locally by x 7→ d[x]
[x] . This induces a morphism of projective

systems
d log : O∗X →W•Ω

1
X .

Let WnΩiX,log ⊂ WnΩiX be the sub-sheaf generated étale(or Nisnevich)-locally by sections of the form
d log [x1] . . . d log [xi] for xj ∈ O∗X . This construction is known to be functorial in X, and the product
structure of WnΩ•X carries over to WnΩ•X,log. For n variable, W•Ω

•
X,log is an abelian sub-pro-sheaf of

W•Ω
•
X and we set WΩ•X,log := lim←−W•Ω

•
X,log. For i ∈ N0 there is a short exact sequence of pro-systems

for étale topology

0→W•Ω
i
X,log →W•Ω

i
X

F−1−−−→W•Ω
i
X → 0

where F denotes a lift of the Frobenius endomorphism.

For the morphism of sites
ε : Xét → XNis

we can identify
ε∗WnΩrX,Nis = WnΩrX,ét

and Kato shows

Proposition 2.0.2. The natural map

WnΩrX,log,Nis → ε∗WnΩrX,log;ét

is an isomorphism.

This means that ε∗WnΩrX,log;ét is Nosnevich locally generated by symbols.

We introduce some subcomplexes of the de Rham and de Rham-Witt complexes which will play an
important role in the obstruction theory.

De�nition 2.0.3. For r < p we de�ne

p(r)Ω∗X·
∈ Cpro(X1)ét/Nis

as the complex
pr OX· → pr−1Ω1

X·
→ · · · → pΩr−1

X·
→ ΩrX·

→ · · ·
and

q(r)W·Ω
∗
X1
∈ Cpro(X1)ét/Nis

as the complex

pr−1VW·OX1
→ pr−2VW·Ω

1
X1
→ · · · → pVW·Ω

r−2
X1
→ VW·Ω

r−1
X1
→W·Ω

r
X1
→ · · ·

It is possible to de�ne this for r > p if one introduces divided powers, but this creates also some problems
for example with syntomic cohomology.

We want to construct quasi-isomorphisms (or isomorphisms in Dpro(X1)

Ω∗X·
∼= W·Ω

∗
X1

p(r)Ω∗X·
∼= q(r)W·Ω

∗
X1

In order to do so, we make use as auxiliary tool a complex on the PD-envelop of X·.

Consider a closed embedding
X· → Z·

into a smooth scheme over W·(k) which allos a lift of Frobenius F : Z· → Z·. For each n, we have the
PD-envelope

Xn → Dn = DXn
(Zn).
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Remark 2.0.4. For a PD-algebra (A, I, γ) and an A-albegra B with some ideal J , there is a universal PD-
algebra DA(B) such that its PD-structure is compatible ith γ and J ·DA(B) is contained in its PD-ideal.
This can be globalised. For a closed immersion of schemes we take J to be the de�ning ideal. This de�nes
the PD-envelope of the closed immersion.

Dn is endowed with a de Rham complex

Ω∗Dn/Wn
= ODn

⊗Ω∗Zn/Wn

such that for the PD-structure
dγn(x) = γn−1(x)dx.

Remark 2.0.5. A PD-sttructure is de�ned in a way such that n! · γn(x) = xn thereby introducing devided
powers.

Let Jn be the de�ning ideal of Xn ⊂ Dn. Then In = (Jn, p) is the ideal of X1 ⊂ Dn. These ideals are

nilpotent. We denote their devided powers by J
[j]
n and I

[j]
n respectively. If j < p they coincide ith the

usual powers.

By de�nition, the étale/Nisnevich sites of X1 and Dn coincide. For simplicity we assume r < p.

De�nition 2.0.6. De�ne J(r)Ω∗D·
∈ Cpro(X1)ét/Nis as the complex

Jr· → Jr−1
· ⊗ Ω1

Z·
→ · · · → J· ⊗ Ωr−1

Z·
→ OD· ⊗ΩrZ·

→

and similarly I(r)Ω∗D·
∈ Cpro(X1)ét/Nis.

From now on, we assume that X· is smooth over W·. Illusie shows in his proof of the comparison theorm
(de Rham-Witt � crystalline) that for each n the lifting of Frobenius

Φ(F ) : ODn
→Wn OX1

induces a quasi-isomorphism of di�erentially graded algebras

Φ(F ) : Ω∗Dn
→WnΩ∗X1

.

Berthelot and Ogus show furthermore, that the restrictions

Ω∗Dn
→ Ω∗Xn

J(r)Ω∗Dn
→ Ω>r

Xn

I(r)Ω∗Dn
→ p(r)Ω∗Xn

are also quasi-isomorphisms (or rather they show that the crystalline cohomology of X and the de Rham
cohomology over the PD-envelope of X coincide). Thus we obtain a diagram

Ω∗D·

Φ(F )

∼
##GGGGGGGG

∼
}}{{

{{
{{

{{

Ω∗X·
W·Ω

∗
X1

which represents a morphism in Dpro(X1)ét/Nis. In particular, this shows that the complexes in question
are canonically quasi-isomorphic. This is independent of the choice of Z·.

Proposition 2.0.7. For X· as before, the above diagram induces a diagram

I(r)Ω∗D·

Φ(F )

∼
&&MMMMMMMMMM

∼
yysssssssss

p(r)Ω∗X·
q(r)W·Ω

∗
X1
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and therefore a canonical quasi-isomorphism

p(r)Ω∗X·
→ q(r)W·Ω

∗
X1

independent of the choice of Z·.

Proof: We mentioned above that I(r)Ω∗Dn
→ p(r)Ω∗Xn

is a quasi-isomorphism. It remains to sho that
Φ(F ) is also a quasi-isomorphism.

Because of I(r)Ω∗Dn
→ p(r)Ω∗Xn

we may also assume that X· = Z· = D·. Furthermore, this is a local
problem, therefore we can assume that the involved schemes are a�ne with Frobenius lift F . Let d be
the dimension of X1. For a sequence ν∗ = ν0 > · · · > νd+1 > 0 such that νi+1 > νi − 1 and νi < p, and
νd+1 = max(0, νd − 1) we consider a subcomplex q(ν∗)W·Ω

∗
X1

q(ν∗)W·Ω
i
X1

=

{
pνi for νi = νi+1

pνi+1VW·Ω
i
X1

for νi = νi+1 + 1

Now Φ(F ) induces a map
Φ(F ) : pν∗Ω∗X·

→ q(ν∗)W·Ω
∗
X1
.

Lemma 2.0.8. This map induces an isomorphism in Dpro(X1)ét/Nis.

Proof: This is done by induction on N =
∑
νi. For N = 0 this means that

Ω∗A·
→W·Ω

∗
A1

is a quasi-isomorphism, which is the comparison isomorphism by Illusie.
No assume the result for smaller values than N > 0. Let i the smallest number such that ν0 = · · · = νi >
νi+1. Let µ∗ such that µj = νj for j > i and µj = νj − 1 for j < i. By induction pµ∗Ω∗X·

→ q(µ∗)W·Ω
∗
X1

is a quasi-isomorphism. The quotients are isomorphic to the following complexes

pµ∗Ω∗X·
/pν∗Ω∗X·

∼= OX1 → · · · → ΩiX1

q(µ∗)W·Ω
∗
X1
/q(ν∗)W·Ω

∗
X1

∼= W (X1)/pW (X1)→ · · · →W·Ω
i
X1
/VW·Ω

i
X1

Illusie shoed that the right-hand sides are quasi-isomorphic and this shos the lemme. 2

As q(ν∗) is a general case of the subcomplex q(r)W·Ω
∗
X1

which corresponds to the sequence νi = max(0, r−
i), this �nishes the proof of the proposition. 2
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