Density Matrix Theory

Lectures	Wed	11:15 - 12:45	PHY 2.0.31
	Thu	10:00 - 11:30	PHY 2.1.29
Exercises	Fri	14:00 - 15:45	PHY 9.1.10

Sheet 8

1. The Anderson impurity model with multiple baths

Let us consider again the Anderson impurity introduced in the Sheet 4 but this time in tunneling contact with a set of baths. While the system Hamiltonian remains unchanged, the bath and tunneling Hamiltonians read:

$$\begin{split} H_{\mathrm{B}} &= \sum_{\alpha \mathbf{k} \sigma} \varepsilon_{\mathbf{k}} \, c_{\alpha \mathbf{k} \sigma}^{\dagger} c_{\alpha \mathbf{k} \sigma}, \\ H_{\mathrm{T}} &= \sum_{\alpha \mathbf{k} \sigma} \tau_{\alpha} \left(c_{\alpha \mathbf{k} \sigma}^{\dagger} d_{\sigma} + d_{\sigma}^{\dagger} c_{\alpha \mathbf{k} \sigma} \right), \end{split}$$

respectively. With α we label the different baths and for simplicity we assume the same dispersion relation for the different baths. The tunnelling coupling τ_{α} is, instead, different to the different baths and we also assume a different equilibrium temperature T_{α} and chemical potential μ_{α} for each of the baths.

1. Assume that: i)The tunnelling Hamiltonian $H_{\rm T}$ can be treated perturbatively; ii)The impurity and the baths are uncorrelated at time t=0 (i.e. $\rho=\rho_{\rm S}\otimes\rho_{\rm B}$). iii) The baths are not correlated between themselves (i.e. $\rho_{\rm B}=\bigotimes_{\alpha}\rho_{\rm B\alpha}$); iv) The temperatures and tunnelling couplings of the baths satisfy the relation $\min_{\alpha}(k_{\rm B}T_{\alpha})\gg\max_{\alpha}(\hbar\gamma_{\alpha})$ where $\gamma_{\alpha}=\frac{2\pi}{\hbar}\tau_{\alpha}^2D_{\alpha}$ and D_{α} is the density of states (constant) for the bath α ; iii) Derive for the reduced density matrix of the impurity an equation of the form:

$$\dot{P}_{0} = -\sum_{\alpha} \gamma_{\alpha} \left\{ 2f_{\alpha}^{+}(\varepsilon_{d})P_{0} - \sum_{\sigma} f_{\alpha}^{-}(\varepsilon_{d})P_{1\sigma} \right\}$$

$$\dot{P}_{1\sigma} = -\sum_{\alpha} \gamma_{\alpha} \left\{ [f_{\alpha}^{+}(\varepsilon_{d} + U) + f_{\alpha}^{-}(\varepsilon_{d})]P_{1\sigma} \right\}$$

$$+ \sum_{\alpha} \gamma_{\alpha} \left\{ f_{\alpha}^{+}(\varepsilon_{d})P_{0} + f_{\alpha}^{-}(\varepsilon_{d} + U)P_{2} \right\}$$

$$\dot{P}_{2} = -\sum_{\alpha} \gamma_{\alpha} \left\{ 2f_{\alpha}^{-}(\varepsilon_{d} + U)P_{2} - \sum_{\sigma} f_{\alpha}^{+}(\varepsilon_{d} + U)P_{1\sigma} \right\}$$

where $f_{\alpha}^{+}(\varepsilon) \equiv [1 + e^{\beta_{\alpha}(\epsilon - \mu_{\alpha})}]^{-1}$ and $f_{\alpha}^{-}(\varepsilon) = 1 - f_{\alpha}^{+}(\varepsilon)$.

2. Prove that the solution of the master equation derived in the first point can be written in the form:

$$P_0^{stat} = \frac{1}{N} \sum_{\alpha} \left[\gamma_{\alpha} f_{\alpha}^{-}(\varepsilon_d) \right] \sum_{\alpha} \left[\gamma_{\alpha} f_{\alpha}^{-}(\varepsilon_d + U) \right]$$

$$P_{1\sigma}^{stat} = \frac{1}{N} \sum_{\alpha} \left[\gamma_{\alpha} f_{\alpha}^{+}(\varepsilon_d) \right] \sum_{\alpha} \left[\gamma_{\alpha} f_{\alpha}^{-}(\varepsilon_d + U) \right]$$

$$P_2^{stat} = \frac{1}{N} \sum_{\alpha} \left[\gamma_{\alpha} f_{\alpha}^{+}(\varepsilon_d) \right] \sum_{\alpha} \left[\gamma_{\alpha} f^{+}(\varepsilon_d + U) \right]$$

where N is the normalization factor that ensures the sum of the populations to be 1.

3. Consider now the case $U + \varepsilon_d \gg \mu_\alpha \forall \alpha$. Prove that in this case the two particle state is excluded from the stationary solution. Moreover show that the stationary reduced density matrix can be written as:

$$\rho_{\mathrm{S}}^{stat} = \sum_{\alpha} \frac{\gamma_{\alpha} [f_{\alpha}^{-}(\varepsilon_{d}) + 2f_{\alpha}^{+}(\varepsilon_{d})]}{\sum_{\alpha'} \gamma_{\alpha'} [f_{\alpha'}^{-}(\varepsilon_{d}) + 2f_{\alpha'}^{+}(\varepsilon_{d})]} \rho_{\mathrm{S}\alpha}^{th},$$

where $\rho_{S\alpha}^{th} = \frac{1}{Z_{\alpha}} e^{\beta_{\alpha}(H_{S} - \mu_{\alpha}N_{S})}$ is the grancanonical distribution of the impurity relative to the bath α .

Hint: It can be useful to consider the stationary density matrix obtained at the previous point written in the form

$$\rho_{\rm S}^{stat} = \frac{1}{N} \left[|0\rangle\langle 0| + \sum_{\sigma} |1\sigma\rangle \frac{\sum_{\alpha} \gamma_{\alpha} f_{\alpha}^{+}(\varepsilon_{d})}{\sum_{\alpha} \gamma_{\alpha} f_{\alpha}^{-}(\varepsilon_{d})} \langle 1\sigma| \right],$$

where N is the appropriate normalization.

4. Prove analogously that, under the condition $\varepsilon_d \ll \mu_\alpha \, \forall \alpha$, the stationary reduced density matrix can be written as:

$$\rho_{\rm S}^{stat} = \sum_{\alpha} \frac{\gamma_{\alpha} [2f_{\alpha}^{-}(\varepsilon_{d} + U) + f_{\alpha}^{+}(\varepsilon_{d} + U)]}{\sum_{\alpha'} \gamma_{\alpha'} [2f_{\alpha'}^{-}(\varepsilon_{d} + U) + f_{\alpha'}^{+}(\varepsilon_{d} + U)]} \rho_{\rm S\alpha}^{th}.$$

5. Prove that with the two formulas derived at points 3 and 4 one obtains a description of the stationary state of the system $\forall \varepsilon_d$ under the only condition that $U \gg |\mu_\alpha - \bar{\mu}|$ and $U \gg k_{\rm B} T_\alpha$, $\forall \alpha$ where $\bar{\mu} = \frac{1}{N_\alpha} \sum_{\alpha} \mu_\alpha$ and N_α is the total number of baths connected to the impurity.

Frohes Schaffen!