## Density Matrix Theory

Lectures

| Wed | $11: 15-12: 45$ | PHY 2.0.31 |
| :---: | :---: | :---: |
| Thu | 10:00-11:30 | PHY 2.1.29 |
| Fri | $14: 00-15: 45$ | PHY 9.1.10 |

## Sheet 1

## 1. Statistical mixture of non-orthogonal states

Prove that the relation

$$
\begin{equation*}
\operatorname{Tr}\left\{\hat{\rho}^{2}\right\} \leqslant(\operatorname{Tr}\{\hat{\rho}\})^{2} \tag{1}
\end{equation*}
$$

holds true for a generic density operator $\hat{\rho}=\sum_{n} w_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|$ where $\sum_{n} w_{n}=1$ and $\left\{\left|\psi_{n}\right\rangle\right\}$ is a set of normalized but, in general, not mutually orthogonal state vectors. Moreover, prove that the equal sign in (1) only holds if and only if $\hat{\rho}$ describes a pure state.

Hint: To prove relation (1), you can use the Cauchy-Schwarz inequality which states:

$$
\begin{equation*}
|\langle a \mid b\rangle|^{2} \leq\langle a \mid a\rangle \cdot\langle b \mid b\rangle \tag{2}
\end{equation*}
$$

for any generic pair of vectors $|a\rangle$ and $|b\rangle$.

## 2. Pure vs. mixed states

Consider the two orbital interacting model for a molecule described by the following Hamiltonian:

$$
\begin{equation*}
\hat{H}=\varepsilon \hat{N}+J \hat{S}_{1} \cdot \hat{S}_{2} \tag{3}
\end{equation*}
$$

where $\hat{N}=\hat{N}_{1}+\hat{N}_{2}$ with $\hat{N}_{i}=\sum_{\tau} c_{i \tau}^{\dagger} c_{i \tau}$ counts the number of electrons in the system and $c_{i \tau}$ destroys an electron of spin $\tau$ and orbital $i$. Moreover $\hat{S}_{i, \alpha}=\frac{\hbar}{2} \sum_{\tau \tau^{\prime}} c_{i \tau}^{\dagger} \sigma_{\tau \tau^{\prime}}^{(\alpha)} c_{i \tau^{\prime}}$ is the component $\alpha=x, y, z$ of the spin vector operator associated to the orbital $i$. The Pauli matrices are denoted by $\sigma^{(\alpha)}$.
a) Consider the set of operators $\mathcal{S}=\left\{\hat{N}_{1}, \hat{N}_{2}, \hat{S}^{2}, \hat{S}_{z}\right\}$, where $\hat{S}^{2}=\left(\hat{S}_{1}+\hat{S}_{2}\right) \cdot\left(\hat{S}_{1}+\hat{S}_{2}\right)$ and, correspondingly $\hat{S}_{z}=\hat{S}_{1, z}+\hat{S}_{2, z}$ is the $z$ component of the total spin operator. Verify that $\mathcal{S}$ is a complete set of operators: i.e. the common eigenvector associated to a string of eigenvalues for all the operators in $\mathcal{S}$ is unique.
b) List the eigenvalues of $\hat{H}$ with the associated eigenvectors. Is $\mathcal{S}^{\prime}=\{\mathcal{S}, \hat{H}\}$ complete? Give an alternative complete set of operators for the system.
c) Prove that the measurement of $\left\langle\hat{N}_{1}\right\rangle=2$ and $\left\langle\hat{N}_{2}\right\rangle=0$ gives full knowledge over the state of the molecule.
d) How many paramenters (i.e. observables) are needed, in general, to fully characterize the quantum state of the molecule? How does this number change if we measure $\left\langle\hat{N}_{1}\right\rangle=\left\langle\hat{N}_{2}\right\rangle=1$ ? Why? What about the case in which the previous result in the measurement of the particle numbers is obtained without any dispersion?

## Frohes Schaffen!

