Density Matrix Theory

Lectures		11:15 - 12:45 10:00 - 11:30	
Exercises	Fri	14:00 - 15:45	PHY 9.1.10
Sheet 1			

1. Statistical mixture of non-orthogonal states

Prove that the relation

$$\operatorname{Tr}\{\hat{\rho}^2\} \leqslant \left(\operatorname{Tr}\{\hat{\rho}\}\right)^2 \tag{1}$$

holds true for a generic density operator $\hat{\rho} = \sum_n w_n |\psi_n\rangle \langle \psi_n|$ where $\sum_n w_n = 1$ and $\{|\psi_n\rangle\}$ is a set of normalized but, in general, *not* mutually orthogonal state vectors. Moreover, prove that the equal sign in (1) only holds if and only if $\hat{\rho}$ describes a pure state.

Hint: To prove relation (1), you can use the Cauchy-Schwarz inequality which states:

$$|\langle a|b\rangle|^2 \le \langle a|a\rangle \cdot \langle b|b\rangle \tag{2}$$

for any generic pair of vectors $|a\rangle$ and $|b\rangle$.

2. Pure vs. mixed states

Consider the two orbital interacting model for a molecule described by the following Hamiltonian:

$$\hat{H} = \varepsilon \hat{N} + J \hat{S}_1 \cdot \hat{S}_2 \tag{3}$$

where $\hat{N} = \hat{N}_1 + \hat{N}_2$ with $\hat{N}_i = \sum_{\tau} c_{i\tau}^{\dagger} c_{i\tau}$ counts the number of electrons in the system and $c_{i\tau}$ destroys an electron of spin τ and orbital *i*. Moreover $\hat{S}_{i,\alpha} = \frac{\hbar}{2} \sum_{\tau\tau'} c_{i\tau}^{\dagger} \sigma_{\tau\tau'}^{(\alpha)} c_{i\tau'}$ is the component $\alpha = x, y, z$ of the spin vector operator associated to the orbital *i*. The Pauli matrices are denoted by $\sigma^{(\alpha)}$.

- a) Consider the set of operators $S = {\hat{N}_1, \hat{N}_2, \hat{S}^2, \hat{S}_z}$, where $\hat{S}^2 = (\hat{S}_1 + \hat{S}_2) \cdot (\hat{S}_1 + \hat{S}_2)$ and, correspondingly $\hat{S}_z = \hat{S}_{1,z} + \hat{S}_{2,z}$ is the z component of the total spin operator. Verify that S is a complete set of operators: i.e. the common eigenvector associated to a string of eigenvalues for all the operators in S is unique.
- b) List the eigenvalues of \hat{H} with the associated eigenvectors. Is $S' = \{S, \hat{H}\}$ complete? Give an alternative complete set of operators for the system.
- c) Prove that the measurement of $\langle \hat{N}_1 \rangle = 2$ and $\langle \hat{N}_2 \rangle = 0$ gives full knowledge over the state of the molecule.
- d) How many parameters (*i.e.* observables) are needed, in general, to fully characterize the quantum state of the molecule? How does this number change if we measure $\langle \hat{N}_1 \rangle = \langle \hat{N}_2 \rangle = 1$? Why? What about the case in which the previous result in the measurement of the particle numbers is obtained *without* any dispersion?

Frohes Schaffen!