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1. General questions

i) Dynamical regimes. Mesoscopic and nanoscopic systems are characterized by different length scales which in
turn determine the kind of transport regimes one can encounter.

a) Under which conditions is a mesoscopic conductor ballistic and when is it diffusive?

b) Consider a ballistic double barrier structure

and the energy scales provided by the temperature kBT , the tunnelling rates ΓL, ΓR at the two barriers,
and the charging energy U . Which dynamical regimes are observed depending on the relative magnitude
of these parameters ?

ii) Provide two explicit examples for the physical realization of:

a) A quantum point contact

b) A quantum dot.

Sketch the associated conductance G as a function of the (plunger) gate voltage Vg. Comment on possible effects
of temperature.

2. Single electron transistor

The figure below is a schematic representation of a single electron transistor: A quantum dot is coupled to a source,
a drain and a gate electrode. We describe the system via the Anderson impurity model tunnel coupled to two leads
as discussed in the lecture. The chemical potentials difference of the leads can be tuned by an applied bias potential,
i.e. eVb = µL − µR, where e > 0 is the modulus of the electron charge and µL(µR) is the left(right)-lead chemical
potential. The potential drop across the structure depends on the capacitive coupling between the dot and the leads.
Moreover, we introduce the effect of the gate via a modification of the Anderson Hamiltonian

ĤS =
∑
σ

(εd − eαGVG) d̂†σd̂σ + UN̂↑N̂↓,

where VG is the electrostatic potential of the gate electrode, αG is the gate coupling constant and N̂σ is the dot number
operator per spin species. Assume moreover that the bias voltage drops symmetrically with respect to the dot, i.e.
µL = µ0 + eVb/2 and µR = µ0 − eVb/2.
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1. Following the procedure we adopted in the previous Sheet, justify that the master equation for the reduced
density matrix assumes the following form:

Ṗ0 = −
∑

α=L,R

γα

[
2f+α (εd)P0 −

∑
σ

f−α (εd)P1σ

]
,

Ṗ1σ = −
∑

α=L,R

γα
[(
f+α (εd + U) + f−α (εd)

)
P1σ

]
+

+
∑

α=L,R

γα
[
f+α (εd)P0 + f−α (εd + U)P2

]
,

Ṗ2 = −
∑

α=L,R

γα

[
2f−α (εd + U)P2 −

∑
σ

f+α (εd + U)P1σ

]
,

where f+α (ε) ≡ [1 + eβα(ε−µα)]−1 and f−α (ε) = 1 − f+α (ε). (2 Points)

2. Verify that the conditions for allowed tunnelling derived in the lecture for the sequential tunnelling regime are
the same as the ones in which the Fermi functions show an inflection point. Give a physical interpretation of
the result. (2 Points)

3. Prove that the current flowing from the α-th bath towards the impurity is given by

Iα = γα
∑
σ

{
f+α (εd)P0 +

[
f+α (εd + U) − f−α (εd)

]
P1σ − f−α (εd + U)P2

}
Hint: Consider the definition of the current as the average particle variation on the impurity. (2 Points)

4. Sweeping the gate voltage one can change the electron number one by one. Determine the gate values at which
the number of electrons in the dot changes. In such “resonant” conditions calculate the conductance. Compare
to the conductance calculated with the equation of motion method for the Green’s functions (Sheet 11).

Hint: Define the current as I = (IL − IR)/2 and use the current conservation condition (IL = −IR).

Frohes Schaffen!
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