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1. Master equation for the Anderson impurity model

Let us consider an Anderson impurity coupled to an electronic lead. We model such an open system using the
following Hamiltonian

Ĥ = ĤS + ĤB + ĤT

where

ĤS =
∑
σ

εd d̂
†
σd̂σ + Un̂↑n̂↓, (1a)

ĤB =
∑
kσ

εk ĉ
†
kσ ĉkσ, (1b)

ĤT =
∑
kσ

τ
(
ĉ†kσd̂σ + d̂†σ ĉkσ

)
. (1c)

The Hamiltonian ĤS describes the Anderson impurity: d̂†σ creates an electron with spin σ and spin independent energy

εd, n̂σ = d̂†σd̂σ counts the number of electrons with spin σ on the impurity, U is the strength of the electron-electron
interaction on the impurity site. ĤB is the Hamiltonian of non interacting electrons with dispersion relation εk and
wave number k. Moreover ĤT accounts for the tunneling processes between the impurity and the bath. For simplicity
let us assume real, spin and momentum independent tunneling matrix elements τ . Let us study the dynamics of
the system by means of the reduced density matrix. Let us assume that the full density matrix can be written in a
factorized form ρ̂(t = 0) = ρ̂S(0)⊗ ρ̂B(0) at time t = 0 and that ρ̂B(0) is described by the gran-canonical distribution

ρ̂B(0) = e−β(ĤB−µN̂B)/Z where Z = TrB
{
e−β(ĤB−µN̂B)

}
is the partition function, µ is the chemical potential, β the

inverse of the thermal energy and N̂B the bath’s number operator.

1. By following the same steps introduced in Sheet 7 for the spin boson model, prove that the reduced density
matrix fulfills the following equation in the interaction picture, valid up to second order in the tunneling matrix
element τ :

˙̂ρred, I(t) = − 1

}2

t∫
0

dt′ TrB
{[
ĤT,I(t),

[
ĤT,I(t

′), ρ̂red,I(t
′)⊗ ρ̂B(0)

]]}
(2)

where ρ̂red,I(t) = TrB {ρ̂I(t)}. (1 Point)

2. By using the explicit form of the tunnelling Hamiltonian and the bath density matrix, show that Eq. (2) may
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be written in the form:

˙̂ρred,I(t) = −τ
2

~2
∑
σ

t∫
0

dt′ [ F (t− t′,+µ) d̂σ(t)d̂†σ(t′) ρ̂red,I(t
′)

+ F (t− t′,−µ) d̂†σ(t)d̂σ(t′) ρ̂red,I(t
′)

− F ∗(t− t′,−µ) d̂σ(t)ρ̂red,I(t
′)d̂†σ(t′)

− F ∗(t− t′,+µ) d̂†σ(t) ρ̂red,I(t
′)d̂σ(t′)

+ h.c.].

(3)

where the correlator F (t− t′, µ) is defined as:

F (t− t′, µ) =
∑
k

TrB
{
ĉ†kσ(t)ĉkσ(t′)ρ̂B

}
and all the operators, including the density operators, are in interaction picture. (2 Points)

3. Let us evaluate F (t− t′, µ). To this extent let us evaluate the sum with respect to the wave number k as

∑
k

g(k) =

+∞∫
−∞

dεL(ε− µ,W )g(ε),

where we introduced the density of states (DOS) L(ε − µ,W ) =
∑

k δ (ε− µ− εk). In the following, since we
are not interested in the effects due to a specific form of the DOS, let us assume a Lorentzian density of states
in the electronic bath

L (ε− µ,W ) = D0
W 2

(ε− µ)2 +W 2
,

where W is the bandwidth and D0 is the density of states at the Fermi level. Prove that F (t− t′, µ), in the wide
bandwidth (W � β−1, εd, U, τ) and in the long time W (t− t′)/}� 1 limits, may be approximated as

F (t− t′, µ) ' −πD0

β
e
i
}µ(t−t

′) i

sinh
(
π t−t

′

}β

) .
Hint: Use the Residuum theorem to compute the following integration

+∞∫
−∞

dεL(ε,W )f(ε)ei
ε
} (t−t′) =

D0

β
2πi

[
+∞∑
k=0

−W 2

W 2 − [(2k + 1)πβ−1]
2 e
− (2k+1)π

}β (t−t′) − i Wβ

2 (1 + eiβW )
e−

W
} (t−t′)

]
,

where f(ε) = 1/(1 + exp(βε)) is the Fermi function. Then consider the wide bandwidth W/β−1 � 1 and the
long time W (t− t′)/}� 1 limits up to the zeroth order in the corresponding analytic terms.

(4 Points)

4. The correlator F (t− t′, µ) decays with respect to the time difference t− t′ approximately as exp(−π t−t
′

~β ). Prove

that the variation rate of the density matrix is of the order γ = 2πτ2D0

} . Finally, discuss, similarly to the spin
boson model, the validity of the Markov approximation. I.e. i) local time approximation, i.e. t′ → t in the
argument of the reduced density matrix inside the time integral in the limit ~γ � kBT ; ii) If we are interested
into a time dynamics on time scales larger than the bath correlation time ~β, the time integration limit can be
moved from the initial time t0 = 0 to t0 = −∞. (2 Points)
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5. Transform the equation from the interaction to the Schrödinger picture:

˙̂ρred(t) = − i
~

[
ĤS, ρ̂red(t)

]
− τ2

~2
∑
σ

∞∫
0

dt′[ F (t′,+µ) d̂σd̂
†
σ(−t′) ρ̂red(t)

+ F (t′,−µ) d̂†σd̂σ(−t′) ρ̂red(t)

− F ∗(t′,−µ) d̂σρ̂red(t)d̂†σ(−t′)

− F ∗(t′,+µ) d̂†σ ρ̂red(t)d̂σ(−t′)
+ h.c.].

(4)

where the density operators are in the Schrödinger picture, while the creation and annihilation operators of the
impurity are still in the interaction picture.

6. Find the eigenenergies of the impurity system and write the equations for the populations in that basis using
Eq.(4).

7. Considering the analytic expression of the correlator F (t− t′, µ) that you have calculated in point 13.2, perform
the time integral in Eq.(4) and obtain the master equation for the populations:

Ṗ0(t) = −2γL (εd − µ,W ) f+(εd)P0(t) + γL (εd − µ,W )
∑
σ

f−(εd)P1σ(t) (5a)

Ṗ1σ(t) = γL(εd − µ,W )f+ (εd)P0(t)+

− γ
[
L (εd + U − µ,W ) f+ (εd + U) + L (εd − µ,W ) f− (εd)

]
P1σ(t)+

+ γL (εd + U − µ,W ) f− (εd + U)P2(t) (5b)

Ṗ2(t) = +γ
∑
σ

L (εd + U − µ,W ) f+ (εd + U)P1σ(t)− 2γL (εd + U − µ,W ) f− (εd + U)P2(t) (5c)

where P0(t) ≡ 〈0|ρ̂red(t)|0〉, P1σ ≡ 〈1σ|ρ̂red(t)|1σ〉 and P2(t) ≡ 〈2|ρ̂red(t)|2〉 are the populations of the reduced
density matrix with respect to the energy eigenbasis |0〉 , |1 ↑〉 , |1 ↓〉 , |2〉 of the impurity. Moreover f+(ε) ≡
[1 + exp(β(ε− µ))]−1 and f−(ε) ≡ f+(−ε).
In the stationary limit Ṗi = 0 for i ∈ { | 0〉, | 1σ〉, | 2〉 }. Is the linear system of equations well defined? What
is the physical interpretation? How do we solve this issue?

Hint: Perform the integration with respect to the time difference t − t′ of the exponential dependence in
F (t− t′, µ) keeping into account that

2Re

∫ ∞
0

dtF (t, µ)ei
εd
~ = 2π~L(εd − µ,W )f+(εd).

8. Prove that the stationary solution of the master equation is:

i) P0 = 1, P1σ = P2 = 0 for µ� εd;

ii) P2 = 1, P1σ = P0 = 0 for µ� εd + U ;

iii) P1σ = 1/2, P2 = P0 = 0 for εd � µ� εd + U ;

where inequalities are taken with respect to the thermal energy kBT and the solution iii) is considered in the
limit U � kBT . Comment the result.

Frohes Schaffen!
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