Quantum theory of condensed matter II

Mesoscopic physics (Quantum transport)
Prof. Milena Grifoni
PD Dr. Andrea Donarini

Tue	$8: 00-10: 00$	9.2 .01
Fri	$12: 00-14: 00$	9.2 .01
Tue	$10: 00-12: 00$	5.0 .21

Sheet 10

1. Mesoscopic beam splitter

Consider the device with three terminals sketched below, restrict yourself to a single mode per terminal and assume that time reversal symmetry holds.

Figure 1: A mesoscopic beam splitter.

1. Assume furthermore that the device is invariant under the exchange of terminal 2 and terminal 3 and show that under these conditions the scattering matrix connecting the incoming amplitudes a_{α} to the outgoing ones b_{α} (with $\alpha=1,2,3$) can be parametrized as

$$
S=\left(\begin{array}{ccc}
r & t & t \tag{1}\\
t & r^{\prime} & t^{\prime} \\
t & t^{\prime} & r^{\prime}
\end{array}\right)
$$

where r, r^{\prime}, t and $t^{\prime} \in \mathbb{C}$.
(2 Points)
2. The 4 parameters of the scattering matrix S obtained in the previous point are not independent. Why? Assume all the parameters of S to be real and show that, for nonzero t, either

$$
t^{2}=\frac{1-r^{2}}{2}, \quad r^{\prime}=-\frac{1+r}{2}, \quad t^{\prime}=\frac{1-r}{2}
$$

or

$$
t^{2}=\frac{1-r^{2}}{2}, \quad r^{\prime}=\frac{1-r}{2}, \quad t^{\prime}=-\frac{1+r}{2}
$$

has to hold. What is the maximum value allowed for t^{2} ? Which scattering matrices can fulfil instead the condition $t=0$? Give a physical interpretation of the results.
(3 Points)
3. Consider now a fully symmetric system, invariant under any permutation of the three terminals. What changes in the scattering matrix S ? Can r^{\prime} be zero in this case?

1. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian in the energy basis

$$
\hat{H}=\sum_{\alpha} \epsilon_{\alpha} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha}\left(=\sum_{i=1}^{N} \hat{h}_{i}\right)
$$

the following relation for the many-body grandcanonical expectation value holds:

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle=\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle \delta_{\alpha_{1} \alpha_{4}} \delta_{\alpha_{2} \alpha_{3}}-\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{3}}\right\rangle\left\langle\hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{4}}\right\rangle \delta_{\alpha_{1} \alpha_{3}} \delta_{\alpha_{2} \alpha_{4}}
$$

where

$$
\left\langle\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}}\right\rangle \equiv \frac{1}{Z} \operatorname{Tr}\left\{\hat{c}_{\alpha_{1}}^{\dagger} \hat{c}_{\alpha_{2}}^{\dagger} \hat{c}_{\alpha_{3}} \hat{c}_{\alpha_{4}} \exp [-\beta(H-\mu N)]\right\}
$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. Hint: Consider the use of the eigenbasis of \hat{h}.
(2 Points)
2. Derive from 2.1 that, for noninteracting fermions, in every other given single particle basis $\{|n\rangle\}$ the following relation holds:

$$
\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}} \hat{c}_{n_{4}}\right\rangle=\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{4}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{3}}\right\rangle-\left\langle\hat{c}_{n_{1}}^{\dagger} \hat{c}_{n_{3}}\right\rangle\left\langle\hat{c}_{n_{2}}^{\dagger} \hat{c}_{n_{4}}\right\rangle
$$

Note that this is valid even if in this basis the Hamiltonian

$$
\hat{H}=\sum_{n, m} h_{n m} \hat{c}_{n}^{\dagger} \hat{c}_{m}
$$

would contain non-diagonal terms, $h_{n m}$ for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_{n}=\sum_{\alpha} u_{n \alpha} \hat{c}_{\alpha}$. Apply the equation proven in 2.1. Finally perform the canonical transformation in the reverse direction.

Frohes Schaffen!

