Quantum theory of condensed matter II

Mesoscopic physics (Quantum transport)

Prof. Milena Grifoni	Tue	8:00 - 10:00	9.2.01
	Fri	12:00 - 14:00	9.2.01
PD Dr. Andrea Donarini	Tue	10:00 - 12:00	5.0.21

Sheet 7

1. Equation of motion for the reduced density matrix

Consider a generic system-bath model represented by the Hamiltonian:

$$\hat{H} = \hat{H}_{\rm S} + \hat{H}_{\rm B} + \hat{H}_{\rm S-B}$$

where $\hat{H}_{\rm S}$ describes a microscopic system coupled via $\hat{H}_{\rm S-B}$ to the macroscopic reservoir described by $\hat{H}_{\rm B}$.

1. Prove that the equation of motion for the density matrix of the total system in the interaction picture reads:

$$\dot{\hat{\rho}}_{\mathrm{I}}(t) = -\frac{i}{\hbar} [\hat{H}_{\mathrm{S-B, I}}(t), \hat{\rho}_{\mathrm{I}}(t)]$$
(1)

where $\hat{H}_{S-B,I}$ is the system-bath Hamiltonian in interaction picture at time t. (2 Points)

2. Prove that the equation (1) is equivalent to the integro-differential equation:

$$\dot{\hat{\rho}}_{\rm I}(t) = -\frac{i}{\hbar} \left[\hat{H}_{\rm S-B,\,I}(t), \hat{\rho}_{\rm I}(0) \right] - \frac{1}{\hbar^2} \int_0^t dt' \left[\hat{H}_{\rm S-B,\,I}(t), \left[\hat{H}_{\rm S-B,\,I}(t'), \hat{\rho}_{\rm I}(t') \right] \right].$$
(2)

(2 Points)

3. Consider now the reduced density operator $\hat{\rho}_{\text{red},\text{I}}(t) := \text{Tr}_{\text{B}} \{\hat{\rho}_{\text{I}}(t)\}$ where $\text{Tr}_{\text{B}}\{\bullet\}$ is the partial trace over the reservoir degrees of freedom and assume the separation of the initial density operator $\hat{\rho}_{\text{I}}(0) = \hat{\rho}_{\text{S}}(0) \otimes \hat{\rho}_{\text{B}}(0)$. Prove that, up to the second perturbative order in the interaction $\hat{H}_{\text{S}-\text{B}}$ one can write:

$$\dot{\hat{\rho}}_{\mathrm{red},\mathrm{I}}(t) = -\frac{i}{\hbar} \mathrm{Tr}_{\mathrm{B}} \left\{ \left[\hat{H}_{\mathrm{S}-\mathrm{B},\mathrm{I}}(t), \hat{\rho}_{\mathrm{S}}(0) \otimes \hat{\rho}_{\mathrm{B}}(0) \right] \right\} + \\
-\frac{1}{\hbar^{2}} \int_{0}^{t} \mathrm{d}t' \mathrm{Tr}_{\mathrm{B}} \left\{ \left[\hat{H}_{\mathrm{S}-\mathrm{B},\mathrm{I}}(t), \left[\hat{H}_{\mathrm{S}-\mathrm{B},\mathrm{I}}(t'), \hat{\rho}_{\mathrm{red},\mathrm{I}}(t') \otimes \hat{\rho}_{\mathrm{B}}(0) \right] \right] \right\}.$$
(3)

Hint: It is useful to start by proving the following relation:

$$\hat{\rho}_{\mathrm{I}}(t) = \hat{\rho}_{\mathrm{S}}(0) \otimes \hat{\rho}_{\mathrm{B}}(0) + O(H_{\mathrm{S-B}})$$

Frohes Schaffen!