Quantum theory of condensed matter II

> Mesoscopic physics (Quantum transport)

Prof. Milena Grifoni
PD Dr. Andrea Donarini

Tue	$8: 00-10: 00$	9.2 .01
Fri	$12: 00-14: 00$	9.2 .01
Tue	$10: 00-12: 00$	5.0 .21

Sheet 3

1. Electronic waveguide

Consider a narrow conductor etched out of a wide one, as shown in the figure 1 . The wide conductor can be treated simply as a two-dimensional conductor.

Figure 1: Schematic representation of the constriction in a 2DEG considered in this exercise.

1. Calculate the location of the Fermi energy relative to the bottom of the band E_{S}, assuming an effective mass $m^{*}=0.07 m$ with m the electron mass and an electron density of $5 \times 10^{11} \mathrm{~cm}^{-2}$.
(1 Point)
2. Plot the electronic density of states for the central region, assuming $W=0.1 \mu \mathrm{~m}$. Consider two possible realizations of the confining potential:
a) Hard walls.

$$
U(y)=\left\{\begin{array}{l}
0, \quad \text { for }-W / 2<y>W / 2 \\
\infty, \quad \text { otherwise }
\end{array}\right.
$$

b) Harmonic confinement.

$$
U(y)=\frac{1}{2} m \omega_{0}^{2} y^{2}
$$

with ω_{0} chosen such that $U(y= \pm W / 2)=E_{F}-E_{S}$.
3. A classical particle travelling in the etched conductor region will, in general, bounce a few times up and down before reaching again the wide conductor, as illustrated by the red-dashed arrows in figure 1. Is it possible to construct the quantum analogue for this dynamics? How?

2. Adiabatic quantum point contact

A quantum point contact as shown in the picture below can be described by the two-dimensional Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, y)=E \psi(x, y) \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\psi(x, \pm d(x))=0 \tag{2}
\end{equation*}
$$

Make the following Ansatz for the wavefunction of the system:

$$
\psi(x, y)=\sum_{n=1}^{\infty} c_{n}(x) \phi_{n}(y ; x)
$$

where

$$
\phi_{n}(y ; x)=\sqrt{\frac{1}{d(x)}} \sin \left(\frac{n \pi}{2 d(x)}(y+d(x))\right)
$$

are a set of local, basis wave functions for the transverse direction which obviously fulfill the boundary condition (2).

1. Derive a set of equations for the functions $c_{n}(x)$, by inserting the Ansatz for $\psi(x, y)$ in the Schrödinger equation (1), and by projecting it on the basis state $\phi_{n}(y ; x)$.
2. Under which conditions for the function $d(x)$ are the equations for $c_{n}(x)$ and $c_{m}(x)$ with $m \neq n$ independent? Give a physical interpretation of the result.

Frohes Schaffen!

