
SECOND QUANTIZATION

Aim of these notes is to introduce the method of second

quantization (2ndQ), i.e., a formulation based on the algebra of

ladder operators aa ˆ,ˆ

• Why the need of second quantization (2ndQ)

• The formalism of 2ndQ



1. DRAWBACKS OF 1st QUANTIZATION

Motivations of a 2Q approach:

(i.e. drawbacks of 1Q approach to many-body problems)

• Quantum mechanical indistinguishability of identical particles

requires  symmetrization of many-body wave function in 1Q

( complications, especially in the presence of interactions)

• 1stQ tailor-made for problems with fixed particle number N 
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1stQ APPROACH TO MANY-BODY 

QUANTUM MECHANICS

Consider the set of eigenfunctions                   of a single-particle

Hamiltonian
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The  quantum mechanics for a system on N particles in 1Q is 

based on the observation that any N-particles wave function 

can be built from the complete, orthonormal basis

or the set
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2-PARTICLES WAVE FUNCTION

A two-particles wave function (normalized) reads
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Where n is the number of times the state     appears in the set
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Generic 2-body wave function reads (cf. H2 molecule)



1stQ  3-BODY WAVE FUNCTION

For the 3-particles wave function (normalized) one introduces

the determinant/permanent for fermions/bosons
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3-BODY WAVE FUNCTION
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Generic 3-body wave function reads



1Q  N-BODY WAVE FUNCTION

The N-particles wave function (normalized) is




 





P

PP

P

n

N1N2

21

0







 ....)(

!

1

!

1
,..., /)par(

1 N

Where:                 

 for fermions / bosons•

• n     total number of particles in state    (n  0,1 for fermions)

• sum over all permutations of the q-numbers
P

• par P  parity of the permutation P

( = 1 or –1 for even/odd number of transpositions)
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2. THE FORMALISM OF 2nd Q

The so-called second quantized representation, or occupation

number representation, is based on:

• Particle´s indistinguishability

• Observation that determinants or permanents of single

particle states form a basis for the Hilbert space of

N-particle states

Idea: It must be simpler to formulate a representation where 

one just counts how many particles are in each single 

particle state



THE FORMALISM OF 2nd Q

Note: In the following, when speaking about the state
it is convenient to think that the quantum numbers

{j} are ordered (e.g. i = xi, x1<x2<...xn)

In the occupation nr. representation the basis states for an 

N-particle system are obtained by listing the occupation nr. of

each basis state: 

N-particle basis states
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We introduce the nr. operators 
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Sum over j determined

by the dimension M

of single particle

Hilbert space



THE FORMALISM OF 2nd Q

N-fermion basis states
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N-boson basis states
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CREATION AND DESTRUCTION 

OPERATORS
To construct this more efficient formulation, we begin with

some abstract definitions:

ii) Introduce a set of operators     , and their adjoint     , such that 

0i) Introduce a reference state        called vacuum state

â 
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with n the number of times the state     

appears in the set
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COMMUTATION RELATIONS

iii) In order to take care of the symmetry of the wave functions,

the operators            fulfill the commutation relations
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 = +/- fermions/bosons

• To understand (**), observe that:
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COMPLETENESS OF 2Q APPROACH

Any N-body wave function can be generated by the

application of a set of N independent creation operators 

to a unique vacuum state

Under these prescriptions:
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FOCK SPACE

iv) Define now by FN the Hilbert space of states with fixed 

particle number N; i.e., the linear span of all states

.,...,,
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v) Call Fock space F the full space containing all many-body

states

NFF 
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While the operator algebra of           does not close in 
individual FN, it does in F
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FOCK SPACE II
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Note: bosons vs fermions

Let us repeatedly apply the same destruction / creation

operators
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OCCUPATION NUMBER OPERATOR

vi) Define the occupation number operator  aan ˆˆˆ 

0)ˆ(0)ˆ(ˆ nn anan   

i.e.,                 is eigenstate of  0)ˆ( na 

 n̂

Moreover, 
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NOTE: CHANGE OF BASIS
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Example: Transformation from the coordinate to the momentum

representation for a 1d system of length L
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NOTE: OPERATORS

In 2ndQ every operator can be expressed in terms

of the creation and annhilation operators. 



ONE- AND TWO-BODY OPERATORS

• 1-body operators 
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• matrix elements from 1stQ

• non symmetrized form!

• order of indices relevant for fermion operators

• 2-body operators
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In particular:



3. REPRESENTATION FOR 1-BODY 

OPERATORS IN 1stQ 

One-body operators       acting in the N-particle Hilbert space
FN read 
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Example: local operators

• Kinetic operator 
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• One particle potential operator 
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in position representation



1-BODY OPERATORS IN 2ndQ 

Consider a 1-body operator that is diagonal in the basis      , i.e.,
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1-BODY OPERATORS IN 2ndQ II


~

In a generic basis          using
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1-body operators in 2ndQ are composed  of products of

creation and annihilation operators, weighted by the

appropriate matrix element of the operator calculated in 1stQ
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LOCAL 1-BODY OPERATORS: 

KINETIC ENERGY
Local operators defined on single particle  states described 

by the coordinate
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Kinetic energy
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same form as for matrix elements with
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KINETIC ENERGY II
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ii) Momentum representation

since     is diagonal in k-spacet̂
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LOCAL 1 BODY OPERATORS: 

DENSITY OPERATOR
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   probability density to

find a particle in r
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Density operator

i) Position representation

ii) Momentum representation

''
,'

'
',

)'( ˆˆˆˆ)(ˆ)(ˆ)(ˆ
kqk

qk

rqi

kk
kk

rkki

tot aaeaaerararn 







 



  
VV

11

 

 
k

qkkqq

q

rqi

tot aaern






ˆˆˆ;ˆ)(ˆ 

V

1
'kkq




momentum transfer



LOCAL 1 BODY OPERATORS:   

NUMBER OPERATOR

i) Position representation

ii) Momentum representation
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SPIN OPERATOR
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To obtain the 2ndQ form,  pull out the spin explicitly:

Total spin operator for N electrons

In 1stQ single spin is expressed with  the vector of Pauli matrices
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where            are fermionic operatorsaa ˆ,ˆ 

in basis 
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SPIN OPERATOR II

 
























 










10

01
,

0

0
,

01

10
ˆ,ˆ,ˆ

i

i
zyx 

',
ˆ'  x



 )  





























)ˆˆˆˆ(),ˆˆˆˆ(),ˆˆˆˆ
2

ˆ
aaaaaaaaiaaaaS



fermionic operatorsaa ˆ,ˆ 

One has, with,
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yielding 



4. REPRESENTATION OF TWO-

BODY OPERATORS

Since only 2 particles are involved in a pair interaction process,

a general two-body operator      can be completely characterized

in terms of its action on two-particle states        
2Ô

• Consider the matrix element
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2-BODY OPERATOR: COULOMB 

INTERACTION
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Coulomb interaction is an operator defined on two

single particle  states described by the coordinates kj rr
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2ndQ: 
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i) Position representation
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COULOMB INTERACTION II

ii) Momentum representation

Coulomb interaction can be seen as a scattering process with

momentum transfer q mediated by
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5 EXAMPLE: FREE ELECTRON GAS 

We start from considering the e-dynamics in the absence 

of ee and ei interactions: 

Free electron gas described by the Hamiltonian
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•  spin degree of freedom
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where the action of        has been  ordered: Nkkk
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GROUND STATE OF FREE E-GAS 
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T = 0 + Pauli principle: Ground state of noninteracting electrons

is obtained upon filling all single particle 

states up to an energy F
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This ground state is denoted as Fermi sea (Fermi sphere in 3d):

(N = even)

Fermi energy

Fermi momentum
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FERMI MOMENTUM kF

As a first exercise, we calculate the relation between the

macroscopic quantity ne = N/V (e-density), and the microscopic

quantity kF

one state fills the volume
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in k-space
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FERMI MOMENTUM kF II
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EXAMPLE : Cu

Alkali metals, Au, Ag, Cu, 1 valence electron per elementary unit 

cell (core electrons do not contribute explicitly). 

 Concentration of conduction electrons = atom concentration

Example: Cu, 4 atoms per FCC unit cell, configuration )4s(3d 110

32210458613  cm.nÅ,.a Cu

FCC

Cu

• Melting temperature of Copper ~ 103 K

yielding: 
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;6.13 1 nmkF

Fermi T

Fermi v

Cu is a degenerate Fermi system even near melting



GROUND STATE ENERGY
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We move on by calculating the ground state energy

Kinetic energy per particle
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High kinetic energy. Repulsive contribution to binding energy

of materials


