SECOND QUANTIZATION

Aim of these notes is to introduce the method of second
guantization (2ndQ), i.e., a formulation based on the algebra of
ladder operators 4,4+

* Why the need of second quantization (2ndQ)
* The formalism of 2ndQ



1. DRAWBACKS OF 1st QUANTIZATION

Motivations of a 20 approach:
(l.e. drawbacks of 1Q approach to many-body problems)

Refresh:
« Quantum mechanical indistinguishability of identical particles
W(r]_! ") J’ 1_> ) /IW(r]j k1 ") J’ ) AZW(r:U ") ]’ 1'7[; ITN)

‘ =1 or A=+1 forbosons/fermions

requires symmetrization of many-body wave function in 1Q
(= complications, especially in the presence of interactions)

« 1stQ tailor-made for problems with fixed particle number N




1stQ APPROACH TO MANY-BODY
QUANTUM MECHANICS

Consider the set of eigenfunctions |y,) =|4) of a single-particle
Hamiltonian |3|Sp

N

H

sp W/1> = 5,1";”/1>

or the set

{v, () =(F|y,)=(F|A)}

The guantum mechanics for a system on N particles in 1Q is
based on the observation that any N-particles wave function
can be built from the complete, orthonormal basis {, (r)}




2-PARTICLES WAVE FUNCTION

A two-particles wave function (normalized) reads

- 1 - - - ~
{ l//:/B% (r,r,) = TW[WM (rl)l//,1v2 (r,)F Ya, (rl)wfivl (12 )]
v1 Mo 1 2

N = H \/ﬁ F/B: Fermions/Bosons
A AT

Where n, is the number of times the state| 1)appears in the set
{1/1V1>,‘/1V2 >}In Dirac representation,

N
1V1’1V2>F/B :ﬁli /IV1>]

‘ Generic 2-body wave function reads (cf. H, molecule)

IBe & / .
WF B(r11 r2) = Z Bvlvz WEV1I3,/1V2 (r11 r2)
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1stQ 3-BODY WAVE FUNCTION

For the 3-particles wave function (normalized) one introduces
the determinant/permanent for fermions/bosons

Example: 4, =4, 4, =4,, 4, =4,

v, () v, () v, (1)
F/B g

N _ _ ~
W oo (r1’ 5, I’3) = ﬁ W, (rl) W, (rz) Y, (r3) y N = 1 |
() v () v () [1,yn:!

|| determinant, || permament (=no signchange)

or 1 -
it Ao e = M A)®1 ) O] 4) F| 1) ®| ) | )

F[24,) ®|4) ®|23) F|43) ®|4,) B 4y) +]4,) ®| 45) ®| 4y)
+] ;) ®|4,) ®| 2,)]




3-BODY WAVE FUNCTION

>

Generic 3-body wave function reads

FIBry & & F/B - v v
4 (rl’rZ’r3) - ZBﬂvﬁvz%g W/IV Ay Ay (rl’rz’r3)

1 Mo Mg
V1,V2.V3



1Q N-BODY WAVE FUNCTION

The N-particles wave function (normalized) is

ﬂvl,ﬁvz ,...ZVN>: \/JI'\“ Ool Z(_g)(l—parP)/z‘lPJ®““®‘le>
| JHM p
A=0
Where:

« &£== forfermions/bosons
« n, total number of particles in state 4 (n,=0,1 for fermions)

. Z sum over all permutations of the g-numbers {ivl,.. A }

"y VN
P

« par P parity of the permutation P
(=1 or -1 for even/odd number of transpositions)



2. THE FORMALISM OF 2nd Q

The so-called second quantized representation, or occupation
number representation, is based on:

« Particle’s indistinguishability

« Observation that determinants or permanents of single
particle states form a basis for the Hilbert space of
N-particle states

ldea: It must be simpler to formulate a representation where
one just counts how many particles are in each single
particle state



THE FORMALISM OF 2nd Q

In the occupation nr. representation the basis states for an

N-particle system are obtained by listing the occupation nr. of
each basis state:

N-particle basis states Sum over j determined
{ by the dimension M
n,,n ,___>}; n, =N of single particle
‘ Al Z A Hilbert space
j

We introduce the nr. operators ﬁﬂi ‘ n, > =N, ‘ n, >

Note: In the following, when speaking about the state
n,.n, .. itis convenient to think that the quantum numbers
{4;} are ordered (e.9. 4; = Xj, X;<X;<...X;)



THE FORMALISM OF 2nd Q

N-fermion basis states

0 |0,00,..)
1 ]100.) [010.) [001.) ..
2 [110.) [L0L.) [011.) ..

N-boson basis states

0 10,0,0,.)
1 |100.) [010.) [001.) ..
2 12,00,.) [020.) [110,) ...



CREATION AND DESTRUCTION
OPERATORS

To construct this more efficient formulation, we begin with
some abstract definitions:

i) Introduce a reference state |0) called vacuum state

i) Introduce a set of operators 8, , and their adjoint &, such that

Py

a/I
WH S0 =wa; a; .4, Ao, i B ) N = [Ty
A

with n, the number of times the state |1) \
appears in the set {2, )...[4, }

o>=o

{ 0,1 fermions ‘”zl’nﬂ? >
n, =

0,1,2,.. bosons



COMMUTATION RELATIONS

i) In order to take care of the symmetry of the wave functions,
the operators 4,, 4; fulfill the commutation relations

A aAll A Al Al A
[a,11 aﬂ ]g = ala,u + @ a/i = 5/1/1 (*) .
&= +/- fermions/bosons

=[4;.8,1.=0 (=)

 To understand (**), observe that:

A1) = N8 8,

O>, |,u,/1> =N é;éﬁ

_C§|/’L ‘ (**)
* For (*) observe that:

5,0 =(0[a,2[0) = (0[(-2) 2.4, +[4,.4:1.[0) = (0[a, &} ./0)

N\ /\

28,




COMPLETENESS OF 2Q APPROACH

Under these prescriptions:

Any N-body wave function can be generated by the
application of a set of N independent creation operators
4; to a unique vacuum state



FOCK SPACE

Iv) Define now by &, the Hilbert space of states with fixed
particle number N; I.e., the linear span of all states

RNV N

v) Call Fock space Fthe full space containing all many-body
states

F =D Fy

— While the operator algebra of &,, &, does not close in
individual &, it does in F



FOCK SPACE Il

Note: bosons vs fermions

Let us repeatedly apply the same destruction / creation
operators &,, 4;

bosons
é‘i é-g é. A
A c’:l/1 4
o F, T LYy e AO
2 F,
Y Y "N . "N 0
a, a, éj éj
fermions a, A
N A
0
Al 2 I P . T]_ TO
(aﬂ) _(ai)Z =0 N N




OCCUPATION NUMBER OPERATOR

vi) Define the occupation number operator A, =44,
mm) 1,(a;)"0)=n(a;)"|0)

i.e., (8;)"|0) is eigenstate of N,

Moreover,

N N
A, A0 A, e Ay, ) = na,a, []a, 10)=2 6,
=1 =1

Lyri )



NOTE: CHANGE OF BASIS

|—Z\/1>z\ 1) = ;m@\i}: 8;[0)(4|4)=4;

0

Example: Transformation from the coordinate to the momentum
representation for a 1d system of length L

A é(x):Zék<x|k>:%Zéke‘kx

A- =a(x), 4,=4a,

j dx(k | x)a(x) = —= Tl j dxe ™4 (x)



NOTE: OPERATORS

In 2ndQ every operator can be expressed in terms
of the creation and annhilation operators.



ONE- AND TWO-BODY OPERATORS

In particular:

 1-body operators

. A
(51 — Zéli :Zoyléiéﬂ 0,1 = <’u|01|ﬂ'>
i=1 A matrix elements from 1stQ
¢ 2 body operators
: ) #)
kZ: ) aa ﬂﬂM'éié:éﬂ'éﬂ
pu

Ouina = <,u‘<,u' 0,

* matrix elements from 1stQ

* non symmetrized form!
 order of indices relevant for fermion operators

)12 2



3. REPRESENTATION FOR 1-BODY
OPERATORS IN 1stQ

One-body operators (51 acting in the N-particle Hilbert space
F read

N
O, = Zél,i with O;; an ordinary operator acting on particle i
=1

Example: local operators

~ P2 AN VAR I
 Kinetic operator T =) —=— =1
i 2w o &Y
* One particle potential operator y; :Zv(ﬁ A Y
| |
i=1 i=1
In general |0, = Y 0 A,
genera 1 /11222 ’1122|21>< 2| In position representation

{

7o) = [ i (Do, (7)

0,

0, = (4



1-BODY OPERATORS IN 2ndQ

Consider a 1-body operator that is diagonal in the basis \/1> , e,

0, =
(i A 2 O A A i )
= (A A i
i=l A
N

—

A2 e A

Vi VN

i:]. //li

= (A4, 0

VN

ﬁﬂ\/%l,ivz e Ay > - ZN;,%W \/1,1>

Zoﬂnﬁ‘ivl,ﬂ.w
A

N
> 6, with 6,=)0,A)1], o, =(1]6]1)
i=1 A

N
PIDNIAV NIV IN VIRV S
ZZ% 5’1“}% ‘ﬂ’vl’}’v

A) \

O, =Y 0,f, =Y (1|6,/4)a,4,
A A




1-BODY OPERATORS IN 2ndQ I

A)ara,

0,

O, =Y 0,f, =» (4
A A

In a generic basis ‘Z> using

one finds

1-body operators in 2ndQ are composed of products of
creation and annihilation operators, weighted by the
appropriate matrix element of the operator calculated in 1stQ



LOCAL 1-BODY OPERATORS:
KINETIC ENERGY

Local operators defined on single particle states described
by the coordinate T;

" N A N hz . o
T :Zt‘ :—Z—VE =>t,4,4 Kinetic energy

1) Position representation

t,, = (uff| A) = [dF [dF(u|F)(FIE|F)F|A) | t(F)
= [dr [dry, (M7, (7) = jdﬁ//;(r)( S % -

= T =284 = o) v, 03 ]t(r)(Zm(r)éﬂ]

A
same form as for matrix elements with
w(f)—>ar), v (r)—>a (r)
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KINETIC ENERGY I

1) Momentum representation

. 2 o
T = j dra* (F)t(r)a(r) = —\%ZZ j dre™ "4 h—vie'k"fég,
k k'

21,2
T = —Zh k A since f is diagonal in k-space
7



LOCAL 1 BODY OPERATORS:
DENSITY OPERATOR

n(F) =y (P = [dF'y" (F)S(F =)y (") probability density to
find a particle in ¥

N N A
m) N, = Zﬁi =Z o(F-1r) Density operator

Ao =D 0,808, = ([P (F)S(F ~F)y, (F) Jasa, =|a* (Fa(F)

1) Momentum representation
I 1 L
A — A (k'-k)FALA —i6-T & A
ntot(r) l(r) a(r) = Ze )raglalg. :\729 Iqraé.malz.
k,k' ]

et Vg |

q K momentum transfer

I igrs . - ALA : |
Ny (1) :Vze.qrpq, Py :Zaﬁam g=k-k'



LOCAL 1 BODY OPERATORS:
NUMBER OPERATOR

= jdrﬁtot(r) Number operator
1) Position representation
N = [dra*(r)a(r)

i) Momentum representation

Note: 1 body Hamiltonian

=Y ¢,8;4, +const=> ¢g,f, +const.



SPIN OPERATOR

N N
Zo-l,i Total spin operator for N electrons

In 1stQ single spin is expressed with the vector of Pauli matrices

s Y| Iy Y S
E@ﬂﬂ: @:M

___________________________________

To obtain the 2ndQ form, pull out the spin explicitly: = {a, o}
~ h

S=2 2lalolg|o)a). ., ——Z< 10100808,

aa'oo’ aaa

where 4,4 are fermionic operators



SPIN OPERATOR II

One has, with, {@ﬁy’&z}:{i éj((l) _Oij’((l) —Olj}

[<G' 5 0>=5

o,—o'

—_

O

X

N

6,|0) =18, .(5..—5.,)

y

(o

A

<G"éz ‘ G> = 50,0' (50-,T o 50',~L)

\
yielding

L Al A Al A cial A Al A Al A Al A ]
S = EZ[@‘@%T +458,,)1(85,8,, —854,,).(4,,4,, —8.4,,))
(04

d*,4 fermionic operators



4. REPRESENTATION OF TWO-
BODY OPERATORS

Since only 2 particles are involved in a pair interaction process,
a general two-body operator O, can be completely characterized
In terms of its action on two-particle states

* Consider the matrix element

0,0 = (1(#]6;| )| A
« Compute \ Non symmetrized
<;U11u2-- Ay CS2 2'12’2ﬂ’N>




2-BODY OPERATOR: COULOMB
INTERACTION

Coulomb interaction is an operator defined on two
single particle states described by the coordinates ;, T,

Zvee jk — Zvee (r o r )

J K | J k| |,U
C w2
’\/W\}\/\/

2ndQ: \7ee =— Z’VWM a,a,a 4,48,

ﬂﬂM« '
i) Position representation ) ‘/1>
= Y[ 0r [arw (0 (Yo~ P (P, () )61,

ﬂﬂMa

=—jdrjd (F)A* (F*)v,, (F —F')A(F")A(T)



COULOMB INTERACTION II

1) Momentum representation
Coulomb interaction can be seen as a scattering process with
momentum transfer g mediated by ¢_ (q)

1 A 1

e = 5 D Uee (G == o.(G)aL & a4 &
Vee o 2\ - Vee (q)pqp—q N - E,éal'(}ee (q)ak+5l,0'ak'—ﬁ,a'ak',o-'ak,o-
‘E'—q,0'> ‘E+ﬁ,0>

————————————————————————————————————————————————————————————————————————————————————————————————————————————

_ _ g @ : _ e’
v, (0) = jdreIqr — =1im jdre"”e =
= r

____________________________________________________________________________________________________________

n—0



5 EXAMPLE: FREE ELECTRON GAS

We start from considering the e-dynamics in the absence
of ee and el interactions:

mm) Free electron gas described by the Hamiltonian

7T
« Allowed momentum values k; = TN Mie Z, V=LL,UL,

* o spin degree of freedom

—

N — —
. 4_|0)=0, 1‘1[ai 0) =|ki01, K, 05,00 Koy )

k(f lZiUi

where the action of - has been ordered: M < ‘Ez‘ < ---‘EN‘



GROUND STATE OF FREE E-GAS

T =0 + Pauli principle: Ground state of noninteracting electrons
IS obtained upon filling all single particle
states up to an energy &

This ground state is denoted as Fermi sea (Fermi sphere in 3d):

_ Al Al Al Al L » " o
FS)=a.4a; .4 a |Q) —‘kl Tk 4o ky, Ty, ¢>
< 21,2
hk
_<g. <..<eg. . =g = F =
\8k1 _gkz _..._Ekle, gkle “F m \ (N even)

3 Fermi momentum
Fermi energy




FERMI MOMENTUM k¢

As a first exercise, we calculate the relation between the
macroscopic quantity n, = N/V (e-density), and the microscopic
quantity ke

|) k 2|_7[ nieZ

| 3
mm) one state fills the volume 2r 2z 2z _ (27)
L L L,V

hence Z—)Z (2 x j
T

In k-space

)N = (Fs|N|Fs) = (FS[Xn, |FS) - 2(2\/7)3_[dlz<FS|ﬁEJ|FS>

o)



FERMI MOMENTUM Kk Il

FS) for |k| <k
) B, FS)= {‘O> othir\‘NiseF

‘IZ‘)<FS| FS)

— N =Y

jdkk jd(cose)jd(pl_

B (27z) 3% "

m) k'’ =37°n




EXAMPLE : Cu

Alkali metals, Au, Ag, Cu, 1 valence electron per elementary unit
cell (core electrons do not contribute explicitly).
- Concentration of conduction electrons = atom concentration

Example: Cu, 4 atoms per FCC unit cell, configuration (3d,,4s,)
af® =361A, n, =845-10%cm® —— k. =13.6nm™;

yielding: . =7.03eV =T, =g /k; =81600K Fermi T
ke
m

Ve =1.57x10°m/s = 0.005¢c Fermiv

» Melting temperature of Copper ~ 103 K

— Cu Is a degenerate Fermi system even near melting



GROUND STATE ENERGY

We move on by calculating the ground state energy

h2k?
E© — <Fs|H°|Fs> (FS[>.
Ko 2m

i, |FS)

_ (22;’)3 ;l:ndeZkzé’(kF - k)

——————

2 Ke 2 I |
__ N h 47zjdkk4— LIV,
(272') 2m 57° 2m |5 I

mm) Kinetic energy per particle

(0) 2 2
S L R N
N 5 2m 52m

e

|

High kinetic energy. Repulsive contribution to binding energy
of materials



