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1. Master equation for the Anderson impurity model

Let us consider an Anderson impurity coupled to an electronic lead. Let us model such an open system using the
following Hamiltonian

Ĥ = ĤS + ĤB + ĤT

where

ĤS =
∑
σ

εd d̂
†
σd̂σ + U n̂↑n̂↓, (1a)

ĤB =
∑
kσ

εk ĉ
†
kσ ĉkσ, (1b)

ĤT =
∑
kσ

τ
(
ĉ†
kσd̂σ + d̂†σ ĉkσ

)
. (1c)

The Hamiltonian ĤS describes the Anderson impurity: d̂†σ creates an electron with spin σ and spin independent energy

εd, n̂σ = d̂†σd̂σ counts the number of electrons with spin σ on the impurity, U is the strength of the electron-electron
interaction on the impurity site. ĤB is the Hamiltonian of non interacting electrons with dispersion relation εk and
wave number k. Moreover ĤT accounts for the tunneling processes between the impurity and the bath. For simplicity
let us assume real, spin and momentum independent tunneling matrix elements τ . Let us study the dynamics of
the system by means of the reduced density matrix. Let us assume that the full density matrix can be written in a
factorized form ρ̂(t = 0) = ρ̂S(0)⊗ ρ̂B(0) at time t = 0 and that ρ̂B(0) is described by the gran-canonical distribution

ρ̂B(0) = e−β(ĤB−µN̂B)/Z where Z = TrB

{
e−β(ĤB−µN̂B)

}
is the partition function, µ is the chemical potential, β the

inverse of the thermal energy and N̂B the bath's number operator.
Then, as it was shown in the lecture, the reduced density matrix ful�lls the following equation in the interaction
picture, valid up to second order in the tunneling matrix element τ :

˙̂ρred, I(t) = −
1

}2

t∫
0

dt′ TrB

{[
ĤT,I(t),

[
ĤT,I(t

′), ρ̂red,I(t
′)⊗ ρ̂B(0)

]]}
(2)

where ρ̂red,I(t) = TrB {ρ̂I(t)}.

1. Using the explicit form of the tunneling Hamiltonian and the bath density matrix, show that Eq. (2) may be
written in the form:

˙̂ρred(t) = −
τ2

~2
∑
σ

t∫
0

dt′ [ F (t− t′,+µ) d̂σ(t)d̂†σ(t′) ρ̂red(t′)

+ F (t− t′,−µ) d̂†σ(t)d̂σ(t′) ρ̂red(t′)

− F ∗(t− t′,−µ) d̂σ(t)ρ̂red(t′)d̂†σ(t′)

− F ∗(t− t′,+µ) d̂†σ(t) ρ̂red(t′)d̂σ(t′)
+ h.c.].

(3)
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where the correlator F (t− t′, µ) is de�ned as:

F (t− t′, µ) =
∑
k

TrB

{
ĉ†
kσ(t)ĉkσ(t

′)ρ̂B

}
and all the operators, including the density operators, are in interaction picture.

2. Let us evaluate F (t− t′, µ). To this extent let us evaluate the sum with respect to the wave number k as

∑
k

g(k) =

+∞∫
−∞

dεL(ε− µ,W )g(ε),

where we introduced the density of states (DOS) L(ε−µ,W ) =
∑

k
δ (ε− µ− εk). In the following, since we are

not interested in the e�ects due to a speci�c form of the DOS, let us assume a Lorentzian density of states in
the electronic bath

L (ε− µ,W ) = D0
W 2

(ε− µ)2 +W 2
,

where W is the bandwidth and D0 is the density of states at the Fermi level. Prove that F (t− t′, µ), in the wide
bandwidth (W � β−1, εd, U, τ) and in the long time W (t− t′)/}� 1 limits, may be approximated as

F (t− t′, µ) ' −πD0

β
e
i
}µ(t−t

′) i

sinh
(
π t−t

′

}β

) .
Hint: Use the Residuum theorem to compute the following integration

+∞∫
−∞

dεL(ε,W )f(ε)ei
ε
} (t−t′) =

D0

β
2πi

[
+∞∑
k=0

−W 2

W 2 − [(2k + 1)πβ−1]
2 e
− (2k+1)π

}β (t−t′) − i Wβ

2 (1 + eiβW )
e−

W
} (t−t

′)

]
,

where f(ε) = 1/(1 + exp(βε)) is the Fermi function. Then consider the wide bandwidth W/β−1 � 1 and the
long time W (t− t′)/}� 1 limits up to the zeroth order in the corresponding analytic terms.

3. The correlator F (t− t′, µ) decays with respect to the time di�erence t− t′ approximately as exp(−π t−t
′

~β ). Prove

that the variation rate of the density matrix is of the order γ = 2πτ2D0

} . Finally, discuss the validity of the local
time approximation, i.e. t′ → t in the argument of the reduced density matrix inside the time integral (Markov

approximation), in the limit ~γ � kBT .

Frohes Scha�en!
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