Quantum theory of condensed matter II

Mesoscopic physics

Prof. Milena Grifoni	Tue	8:00 - 10:00	9.2.01
	Fri	10:00 - 12:00	H33
PD Dr. Andrea Donarini	Fri	12:00 - 14:00	5.0.20

Sheet 9

1. Occupation number representation

Let us consider a fermionic system with two single particle states $|\alpha\rangle$ and $|\beta\rangle$ that span the (two-dimensional) oneparticle Hilbert space.

- 1. What is the dimension of the *two*-particle Hilbert space? What is the dimension of the Fock space? Write down the basis of the Fock space explicitly as Slater determinants of the wave functions $\phi_{\alpha}(\mathbf{r}), \phi_{\beta}(\mathbf{r})$ and in the occupation number representation. (2 Points)
- 2. Calculate, in the Fock basis, the matrix representation of the creation and annihilation operators $\hat{c}_{\mu}, \hat{c}^{\dagger}_{\mu}$ ($\mu = \alpha, \beta$) and also of the occupation operators $\hat{n}_{\mu} = \hat{c}^{\dagger}_{\mu}\hat{c}_{\mu}$. (2 Points)
- 3. Using explicitly the matrix multiplication of the matrices calculated in (b), calculate the anticommutator relations $[\hat{c}_{\mu},\hat{c}_{\nu}]_{+} = [\hat{c}^{\dagger}_{\mu},\hat{c}^{\dagger}_{\nu}]_{+} = 0$ and $[\hat{c}_{\mu},\hat{c}^{\dagger}_{\nu}]_{+} = \delta_{\mu\nu}$. (2 Points)

2. Wick's theorem

1. Show that, for a system of non-interacting fermions described by the Hamiltonian $\hat{H} = \sum_{\alpha} \epsilon_{\alpha} \hat{c}^{\dagger}_{\alpha} \hat{c}_{\alpha}$, the following relation for the many-body grandcanonical expectation value holds:

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle = \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_4} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \rangle \delta_{\alpha_1 \alpha_4} \, \delta_{\alpha_2 \alpha_3} - \langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}_{\alpha_3} \rangle \langle \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_4} \rangle \delta_{\alpha_1 \alpha_3} \, \delta_{\alpha_2 \alpha_4},$$

where

$$\langle \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \rangle \equiv \frac{1}{Z} \operatorname{Tr} \left\{ \hat{c}^{\dagger}_{\alpha_1} \hat{c}^{\dagger}_{\alpha_2} \hat{c}_{\alpha_3} \hat{c}_{\alpha_4} \exp\left[-\beta(H-\mu N)\right] \right\}$$

and Z is the grandcanonical partition function. The trace is taken over the full Fock space. (2 Points)

2. Derive from 2.1 that, for noninteracting fermions, in every other given single particle basis $\{|n\rangle\}$ the following relation holds:

$$\langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \hat{c}_{n_4} \rangle = \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_4} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_3} \rangle - \langle \hat{c}_{n_1}^{\dagger} \hat{c}_{n_3} \rangle \langle \hat{c}_{n_2}^{\dagger} \hat{c}_{n_4} \rangle.$$

Note that this is valid even if in this basis the Hamiltonian

$$\hat{H} = \sum_{n,m} h_{nm} \hat{c}_n^\dagger \hat{c}_m$$

would contain non-diagonal terms, h_{nm} for $n \neq m$. Hint: Diagonalize H first, using a unitary transformation $\hat{c}_n = \sum_{\alpha} u_{n\alpha} \hat{c}_{\alpha}$. Apply the equation proven in 2.1. Finally perform the canonical transformation in the reverse direction. (2 Points)

Frohe Weihnachten!