Quantum theory of condensed matter II

Mesoscopic physics

| Prof. Milena Grifoni | Tue $8: 00-10: 00$ | 9.2 .01 |
| :--- | :--- | ---: | ---: |
| PD Dr. Andrea Donarini | Fri $10: 00-12: 00$ | H33 |
| Pri | 12:00-14:00 | 5.0 .20 |

Sheet 6

1. Double square barrier

Consider the one dimensional problem of a wave packet impinging a double square barrier. Assume for the scattering region the following parametrization of the potential:

$$
U(x)=\left\{\begin{array}{cl}
U_{1} & 0 \leq x \leq W_{1} \tag{1}\\
U_{2} & W_{1}+d \leq x \leq W_{1}+d+W_{2} \\
0 & \text { else }
\end{array}\right.
$$

where $U_{1}, U_{2}, W_{1}, W_{2}$ and d are all positive. You should use the method of finite differences and the Fisher-Lee relations to calculate numerically the transmission through the system. In particular: Remember that the second derivative of the wavefunction has to be discretized as

$$
\begin{array}{r}
\psi(x) \rightarrow \psi\left(x_{i}\right) \equiv \psi_{i} \\
\psi^{\prime \prime}(x) \rightarrow \psi^{\prime \prime}\left(x_{i}\right)=\frac{\psi_{i+1}-2 \psi_{i}+\psi_{i-1}}{a^{2}} \tag{2}
\end{array}
$$

being a the discretization lattice spacing. This leads to the discrete Schrödinger equation $H_{i j} \psi_{j}=E \psi_{i}$ with

$$
\begin{equation*}
H_{i j}=\left(2 t+U_{i}\right) \delta_{i j}-t \delta_{i+1, j}-t \delta_{i-1, j} \tag{3}
\end{equation*}
$$

$t=\hbar^{2} / 2 m a^{2}$ is the hopping parameter and $U_{i} \equiv U\left(x_{i}\right)$.

1. In the lecture it was shown that the problem of inverting the full (infinite) matrix $E-H$ can be avoided by using the finite sized Hamiltonian of the scattering region H_{S} and taking the leads into account by adding the so-called self energy $\Sigma^{R / A}=\Sigma_{L, i j}^{R / A}+\Sigma_{R, i j}^{R / A}$ with

$$
\begin{equation*}
\Sigma_{L, i j}^{R}=-t e^{i k a} \delta_{i 1} \delta_{1 j}, \quad \text { and } \quad \Sigma_{R i j}^{R}=-t e^{i k a} \delta_{i N} \delta_{N j} \tag{4}
\end{equation*}
$$

Moreover it holds $\Sigma_{\alpha, i j}^{A}=\left(\Sigma_{\alpha, j i}^{R}\right)^{*}$. " 1 " and " N " in Eq. (4) are the first and the last point in the scattering region respectively. The retarded/advanced Green function of the scattering region is then

$$
\begin{equation*}
G_{S}^{R / A}=\left(E-H_{S}-\Sigma^{R / A}\right)^{-1} \tag{5}
\end{equation*}
$$

Set up H_{S} and calculate $G_{S}^{R / A}$ numerically. You can use for example Matlab to invert the matrix.
(3 Points)
2. Relate the Green function to the transmission using the Fisher-Lee relation derived in class

$$
\begin{equation*}
T=\operatorname{Tr}\left[\Gamma_{R} G_{S}^{R} \Gamma_{L} G_{S}^{A}\right] \quad \Gamma_{\alpha}=i\left[\Sigma_{\alpha}^{R}-\Sigma_{\alpha}^{A}\right] \tag{6}
\end{equation*}
$$

3. Plot the transmission as a function $E>0$ for different parameters of the barriers and lattice spacings. Compare the numerical result to the analytical one:

$$
\begin{equation*}
T(E)=\left|\frac{t_{1} t_{2}}{1-r_{1} r_{2} e^{2 i k_{E} d}}\right|^{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
t_{i} & =\frac{e^{i k_{E} W_{i}}}{\cosh \left(\kappa_{i, E} W_{i}\right)+i \frac{\epsilon_{i, E}}{2} \sinh \left(\kappa_{i, E} W_{i}\right)} \\
r_{i} & =-i \frac{\eta_{i, E}}{2} \frac{\sinh \left(\kappa_{i, E} W_{i}\right)}{\cosh \left(\kappa_{i, E} W_{i}\right)+i \frac{\epsilon_{i, E}}{2} \sinh \left(\kappa_{i, E} W_{i}\right)} \tag{8}
\end{align*}
$$

and $k_{E}=\sqrt{2 m E} / \hbar, \kappa_{i, E}=\sqrt{2 m\left(U_{i}-E\right)} / \hbar, \epsilon_{i, E}=\kappa_{i, E} / k_{E}-k_{E} / \kappa_{i, E}$ and $\eta_{i, E}=\kappa_{i, E} / k_{E}+k_{E} / \kappa_{i, E}$. Give a physical interpretation of the results.

Frohes Schaffen!

