Quantum theory of condensed matter II

Mesoscopic physics

Prof. Milena Grifoni	Tue Fri	8:00 - 10:00 10:00 - 12:00	9.2.01 H33
PD Dr. Andrea Donarini	Fri	12:00 - 14:00	5.0.20
Sheet 5			

1. Fisher-Lee relation

Given a scattering problem, with a scattering region connected to several leads, the Fisher-Lee relation connects the (retarded) Green's function of the full system G^{R} to the elements of its scattering matrix. Consider a 2 terminal device as the one in the figure and restrict yourself to a single transversal mode per lead. Starting from the eigenfunction representation of the retarded Green's function, prove that:

$$G^{\rm R}(x,x';E) = t_E G^{\rm R}_0(x,x';E)\theta(x-x_{\rm R}) + [1+r_E e^{-2ik_E x'}]G^{\rm R}_0(x,x';E)\theta(x_{\rm L}-x),$$
(1)

where $x_{\rm L}$ and $x_{\rm R}$ define the borders of the scattering region, $x' < x_{\rm L}$, $G_0^{\rm R}(x, x'; E)$ is the free particle Green's function, and t_E and r_E are the transmission and reflection amplitudes associated to the scattering region.

Note that
$$k_E = \sqrt{\frac{2mE}{\hbar^2}}$$
. (4 Points)

2. Resonant tunnelling

where v_E

In e.g., resonant tunnelling heterostructures one can make quantum-well systems which to a good approximation can be described by a 1D model of free electrons with two tunnelling barriers. Here we simplify it somewhat further by representing the tunnelling barriers by delta functions situated at $x_L = -d/2$ and $x_R = d/2$. The Hamiltonian is then given by:

$$H = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + U_0[\delta(x - x_1) + \delta(x - x_2)].$$
(2)

1. With the help of the Dyson equation show that the retarded Green's function, for $x' < x_L < x_R < x$, reads:

$$G^{\mathrm{R}}(x,x';E) = \frac{e^{ik_E(x-x')}}{iv_E} \left[1 + \alpha(e^{-ikx_L}, e^{-ikx_R}) \begin{pmatrix} 1-\alpha & -\alpha e^{i\theta} \\ -\alpha e^{i\theta} & 1-\alpha \end{pmatrix}^{-1} \begin{pmatrix} e^{ikx_L} \\ e^{ikx_R} \end{pmatrix} \right],$$
$$= \frac{\hbar k_E}{m} = \sqrt{\frac{2E}{m}}, \ \alpha = \frac{U_0}{i\hbar v_E} \text{ and } \theta = k_E d.$$

1

2. From the expression of the Green's function just calculated, derive which is the transmission through a double delta barrier.

(2 Points)

Frohes Schaffen!