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1. Coulomb blockade

Consider an electronic quantum dot connected by weak tunnelling junctions (e.g. two completely pinched off quantum
point contacts in a two dimensional electron gas) to two reservoirs at electrochemical potentials µL = µ0 + eVbias/2
and µR = µ0 − eVbias/2, respectively, where e is the electron charge and Vbias is the bias voltage across the junction.
As such, these reservoirs work as source and drain electrodes for the quantum dot. The energy levels of the latter are
controlled via a third electrode: the gate. In particular, the energy of the mth excited state with N electrons on the
quantum dot is given by E(N,m) = E0(N,m) +αNeVgate, where E0(m,N) denotes the spectrum of the isolated dot,
Vgate is the potential of the gate electrode and α is a dimensionless parameter which determines the effectiveness of
the gate electrode.

1. Using the fermionic statistics of the electrons and the energy conservation during the tunnelling process, de-
termine under which conditions an electron can tunnel between the quantum dot and the left/right electrode.
Express these conditions in terms of inequalities involving the gate and the bias voltages Vgate and Vbias, respec-
tively.

2 Points

2. Using the relations obtained at the previous point determine, in the plane Vgate,Vbias the regions in which the
current is not flowing through the quantum dot. Make a sketch of the result. These areas goes under the name
of Coulomb diamonds.

2 Points

3. For (Vgate, Vbias) belonging to a Coulomb diamond the electron number is fixed on the quantum dot. For
Vbias = 0 prove that the gate voltages at which two neighboring Coulomb diamonds are touching each other, i.e.
the electron number on the dot passes from N to N + 1 is eVgate = E0(N + 1, 0)− E0(N, 0)− µ0. What is the
form of the (zero bias) conductance as a function of the gate voltage Vgate?

2 Points

4. Prove that the highest bias associated to the Coulomb diamond corresponding to an occupation of N electrons
is given by the equation eVbias = E0(N + 1, 0) − 2E0(N, 0) + E0(N − 1, 0). The expression on the right hand
side is the so called addition energy of the quantum dot.

2 Points

2. Electronic waveguide

Consider a narrow conductor etched out of a wide one, as shown in the figure 1. The wide conductor can be treated
simply as a two-dimensional conductor.

1. Calculate the location of the Fermi energy relative to the bottom of the band ES , assuming an effective mass
m∗ = 0.07m with m the electron mass and an electron density of 5× 1011 cm−2.

1 Point
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Figure 1: Schematic representation of the constriction used in exercises 2 and 3.

2. Plot the electronic density of states for the central region, assuming W = 0.1µm. Consider two possible realiza-
tions of the confining potential:

a) Hard walls.

U(y) =

{
0, for −W/2 < y > W/2

∞, otherwise

b) Harmonic confinement.

U(y) =
1

2
mω2

0y
2

with ω0 chosen such that U(y = ±W/2) = EF − ES .

2 Points

3. A classical particle travelling in the etched conductor region will, in general, bounce a few times up and down
before reaching again the wide conductor, as illustrated by the red-dashed arrows in figure 1. Is it possible to
construct the quantum analogue for this dynamics? How?

1 Point

3. Filling of the Landau levels

Consider a narrow conductor etched out of a wide conductor as in Fig. 1 and assume a parabolic confining potential.
Calculate the number of transverse modes as a function of the magnetic field, for the following cases:

a) assuming constant Fermi energy

b) assuming constant electron density

Use the results for the spectrum of the Landau levels obtained in the first exercise of the previous sheet and prove that
if the Fermi energy remains constant then the conductor can be completely depleted as the magnetic field is increased,
(see B.J. van Wees et al., Phys. Rev. B 38, 3625 (1988) for the experimental evidence), but if the electron density
is assumed to remain constant then the number of modes cannot decrease to zero (at least one mode remains always
occupied) as it is shown, for example in K.F. Berggren et al., Phys. Rev. B 37, 10118 (1988).

2 Points

Frohes Schaffen!
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