Quantum theory of condensed matter II

Mesoscopic physics

| Prof. Milena Grifoni | Tue $8: 00-10: 00$ | 9.2 .01 |
| :--- | ---: | ---: | ---: |
| | Fri $10: 00-12: 00$ | H33 |
| PD Dr. Andrea Donarini | Fri $12: 00-14: 00$ | 5.0 .20 |

Sheet 2

1. Landau levels

Consider a 2 dimensional conductor confined to the $x y$ plane in presence of a uniform magnetic field $\vec{B}=B \vec{e}_{z}$ pointing in the z direction.

1. Prove that the Schrödinger equation for the system can be written in the form:

$$
\begin{equation*}
\left(\frac{\left(p_{x}+e B y\right)^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}\right) \Psi(x, y)=E \Psi(x, y) \tag{1}
\end{equation*}
$$

where $p_{x}=-i \hbar \frac{\partial}{\partial x}$ and $p_{y}=-i \hbar \frac{\partial}{\partial y}$.
Hint: Use the minimal coupling $\vec{p} \rightarrow \vec{p}-e \vec{A}$ for the description of the magnetic field, where \vec{A} is the vector potential.

2 Points
2. Using the translational invariance of the Hamiltonian (1) in the x direction one can make the Ansatz

$$
\Psi(x, y)=\frac{1}{\sqrt{L}} e^{i k x} \chi_{k}(y)
$$

where L is the (large, see next point for a quantitative estimate) size of the conductor, both in the x and y direction. Prove that the function $\chi_{k}(y)$ should solve the equation of a quantum harmonic oscillator of mass m and frequency $\omega_{c}=\frac{|e| B}{m}$ centered around the point $y_{k}=-\frac{\hbar k}{e B}$. Write the corresponding eigenvalues $E_{n, k}$ and also the eigenfunctions $\chi_{n, k}(y)$ in terms of the Hermite polynomials.

4 Points
3. Prove that the solutions obtained above is only valid in the limit $L \gg \sqrt{\hbar /\left(m \omega_{c}\right)}$ and $L \gg|\hbar k /(e B)|$, thus giving a quantitative meaning to the condition on L assumed in the previous point.

2 Points
4. Which is the group velocity associated to the state $\chi_{n, k}(y)$? How does this result compare with the classical picture of the orbits of a charged particle in a magnetic field?

1 Point
5. Now consider the system considered before but with an additional parabolic confinement $U(y)=\frac{1}{2} m \omega_{0}^{2} y^{2}$. How are the solutions of the Schrdinger equation modified by the additional confinement? Which is the group velocity associated to the state of the system?

2. Adiabatic quantum point contact (to be discussed in class)

A quantum point contact as shown in the picture below can be described by the two-dimensional Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, y)=E \psi(x, y) \tag{2}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\psi(x, \pm d(x))=0 \tag{3}
\end{equation*}
$$

Make the following Ansatz for the wavefunction of the system:

$$
\psi(x, y)=\sum_{n=1}^{\infty} c_{n}(x) \phi_{n}(y ; x)
$$

where

$$
\phi_{n}(y ; x)=\sqrt{\frac{1}{d(x)}} \sin \left(\frac{n \pi}{2 d(x)}(y+d(x))\right),
$$

are a set of local, basis wave functions for the transverse direction which obviously fulfill the boundary condition (3).

1. Derive a set of equations for the functions $c_{n}(x)$, by inserting the Ansatz for $\psi(x, y)$ in the Schrödinger equation (2), and by projecting it on the basis state $\phi_{n}(y ; x)$.
2. Under which conditions for the function $d(x)$ are the equations for $c_{n}(x)$ and $c_{m}(x)$ with $m \neq n$ independent? Give a physical interpretation of the result.

Frohes Schaffen!

