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Narrow conducting channels are currently produced in, e.g., GaAs/A1„Ga& „As heterostruc-

tures by means of different lithographic methods. Depending on various factors associated with the

fabrication process, problems arise as to how to characterize such channels in terms of electron con-

centration and effective width. Here we elaborate on a simple model designed for very narrow

channels in which the lateral electrostatic confinement is assumed to be a parabolic well. The

confinement gives rise to one-dimensional subbands, which gradually depopulate as an increasing,

perpendicular magnetic field is applied. Because of the electrostatic confinement, a plot of sublevel

index n versus inverse magnetic field is generally nonlinear. This nonlinearity is used here to extract

an electron concentration and width for the channel.

I. INTRODUCTION

Advances in lithographic and molecular-beam-epitaxy
and metal-organic chemical-vapor-deposition techniques
now make it possible to fabricate high-mobility semicon-
ductor microstructures with quasi-one-dimensional (1D)
transport behavior. Here we will focus on modulation-
doped GaAs/Al„Ga, „As heterojunctions, where elec-
tronic motion is quantum mechanically confined in two
directions while being free in the third dimension, along
which quasi-1D transport can occur. ' As for the two-
dimensional (2D) case, transverse confinement at the
semiconductor interface gives rise to discrete subbands.
At the usual electron concentrations [N, =(1-5)X 10'
m j and low temperatures only the lowest 2D subband
is occupied, which effectively removes one degree of free-
dom. Subsequent lateral confinement, achieved by vari-
ous lithographic methods, reduces the motion in a second
direction parallel to the interface. When the width of
such a channel or electron waveguide is scaled down to
dimensions approaching the Fermi wavelength (typically
-40-60 nm), the lateral confinement induces distinct
quantized levels, separated by only a few meV or less.
Therefore in this new regime of quasi-1D quantum trans-
port a finite number of occupied 1D subbands determine
the transport properties at low temperatures.

A difficulty with the characterization of narrow chan-
nels is how to determine the electron density and the
width 8'. Ideally, a quantum-mechanical simulation
based on a combined, self-consistent solution of the
Schrodinger and Poisson equations for the test structure
should answer this question. In reality, however, this
procedure is complicated by uncontrolled factors intro-
duced by the fabrication process, such as damage-related
traps and deep impurities. For example, in the split
GaAs/Al Ga& „As heterojunction field-effect transistor
(FET) of Refs. 1 and 2, a narrow conducting channel is
created beneath a slit in the gate produced by electron-

beam lithography. Depending on the accelerating volt-
age used for the electron beam, the electron concentra-
tion in the channel may be less than that beneath the
unexposed ungated regions between the gate and source
and drain. The detailed mechanism behind the drop in
carrier concentration is unknown. Hence, theoretical
simulations are hard to implement for detailed quantita-
tive purposes, although they give valuable general gui-
dance. The width was therefore determined from the
temperature-dependent electron-electron-interaction
correction. The areal electron concentration was estimat-
ed from the period of the Shubnikov-de Haas oscilla-
tions in wide channels ( W& 2500 A). In this regime the
period of the oscillations was found to be independent of
W for the particular device investigated. Because of this
fortunate situation, the areal electron concentration
could be taken to be constant also for narrower channels
in which lateral quantization sets in and causes clear de-
viations from a linear dependence of the Landau index on
inverse magnetic field. This analysis seems to depend on
rare circumstances —generally, one expects that the areal
electron concentration varies with 8'.

Problems of the kind discussed above are also
encountered in connection with mesa-etched GaAs/
Al„oa& „As submicrometer heterostructures. ' Because
of sidewall depletion effects the effective width of the
channel may be inuch smaller than the nominal width of
the etched mesa. From an analysis of the weak-field neg-
ative magnetoresistance in terms of a theory for weak lo-
calization in the presence of boundary scattering, a value
for the effective width may be extracted. ' As mentioned
above, the electron concentration in wider channels is
readily obtained from Shubnikov-de Haas oscillations
and the resulting value is comparable to the original ma-
terial value. For narrow mesas, however, the data resem-
ble Shubnikov —de Haas oscillations at higher fields only,
but then suggest lower values for the electron concentra-
tion.
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The above discussion serves to illustrate that it is not a
straightforward matter to determine the width and elec-
tron concentration of very narrow quantum channels.
The results depend on modeling, the accuracy of which
may possibly be disputed. The purpose of the present
work is to elaborate on a supplementary and elementary
model which makes use of the deviations from pure
Shubnikov —de Haas oscillations in narrow channels.
This model of magnetic depopulation of hybrid magne-
toelectric 1D subbands is described in Sec. II, where it is
also used to characterize the etched GaAs/Al„Ga, „As
mesa and the split-gate heterojunction FET mentioned
above. Effects of level broadening due to elastic scatter-
ing are discussed in Sec. III. A brief summary and corn-
ments are found in Sec. IV. A preliminary report is
found in Ref. 4.

II. A MODEL FOR LATERALLY CONFINED
ELECTRONS IN A PERPENDICULAR

MAGNETIC FIELD

Let us first consider the case of an ideal, infinite 2D
electron gas in the (x,y) plane with a magnetic field 8 ap-
plied in the perpendicular z direction. Choosing the Lan-
dau gauge A=8(O, x, O) and neglecting spin splitting be-
cause of the small g value of GaAs, one finds the Hamil-
tonian

not necessarily true because the electron states may be
severely distorted by the boundaries. This would happen
when the extension of an occupied Landau state exceeds
the dimensions of the system. As a consequence, depopu-
lation and Shubnikov-de Haas oscillations are modified;
nL versus 1/8 is no longer linear.

Let us now consider the case of a narrow quantum
channel in the absence of a magnetic field. If the electro-
static confinement is in the x direction and the free
translational motion takes place along the y direction, the
Hamiltonian for the transverse motion is

p
2

+ VE(x),
2m

(6)

E (k )=E +A k /(2m') .

The corresponding 1D density of states per unit length is,
for the nth subband,

1D(E) 1 2m'
m6 E —Eo

' 1/2

B(E E„), —

where VE(x) is the confining electrostatic energy term. If
Vz(x) is sufficiently narrow, the energy spectrum will

consist of well separated, discrete sublevels E„. Adding
the translational motion, we have the 1D subband disper-
sions

p~ m co~
+ (x —xo)

2m 2

for the magnetically confined motion; m ' is the efrective
mass, co, =

~

e
~

8/m' is the cyclotron frequency, and
the confining parabola is centered at xo=p /(eB), where

p is the y component of the momentum. The energy lev-

els are

where B(x)=1 for x &0 and zero otherwise. Hence the
total density of states per unit length is the quasi-1D ex-
pression

goiD(E)= gg„' (E) .

The number of occupied subbands and the position of the
Fermi level EF follow from

E„=Ace,(n + ,'), n =0, 1,-2, . . . (2) N'
e g [2m '(EF E„)]'~B(EF——E„)

and the eigenfunctions are of the form

%„k (x,y)=P„(x —xo)e (3)

where P„(x) is the harmonic-oscillator function and

kz
——p /fi Ignoring .lifetime broadening the density of

states per unit area is

g„„(E)= +5(E Ace, (n—+ —,')) . (4)
n

Complete filling of nL Landau levels therefore occurs at
fields at which

7TR 2D

i.e., Landau states are progressively depopulated with in-
creasing field. If the experimentally observed minima of
the Shubnikov-de Haas oscillations in the magnetoresis-
tance are associated with the complete depopulation of
Landau levels, the sheet-carrier concentration can thus
be determined from the slope of a linear plot of nL versus
1/B.

If the system is of finite size, however, this analysis is

y ~1D (10)

where N,' is the number of electrons per unit length and

N,' „denotes subband occupation.
If we now apply a magnetic field as above, the magnet-

ic confinement has to be added to the Hamiltonian in Eq.
(6), i.e.,

p~2 mb~2
+ VE(x)+ (x —xo)

2m 2

The solution has the same structure as in the 1D case
above, but when the electrostatic and magnetic terms are
of comparable magnitude, the electron states are best de-
scribed as hybrid magnetoelectric states. The magnetic
term represents an additional confinement. As a conse-
quence, the sublevel separation must increase with in-
creasing B. Because of this diamagnetic shift a magnetic
depopulation of the subbands occurs and oscillations akin
to Shubnikov-de Haas oscillations appear in the magne-
toresistance. The diamagnetic depopulation of the sub-
bands is augmented by a simultaneous flattening of the
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V(x)= (x —xo) +
m'~'

2 2m '(8) (13)

where xo ——xo(co, /co),
m (8 ) =m '(co/coo) )m '
mass. The corresponding
magnetoelectric subbands

~=(~' + )0'&~o and2 1/2

is an effective "magnetic"
eigenvalues define the hybrid

A'2k 2

E„(k,) =E„(8)+
2m '(8) (14)

where E„(B)=fico(n+—,'}. As before, the one-particle
states are

subband dispersions, which can be understood qualita-
tively by looking at the limit of very high fields. Then the
magnetic term in Eq. (11) eventually dominates over the
electrostatic confinement Vz(x), and the initial parabolic
subband dispersions in Eq. (7) are gradually turned into
practically dispersionless Landau levels as in the 2D case.

In order to make our model quantitative, we must now
specify VE(x). As emphasized in the Introduction,
quantum-mechanical simulations may fail in the present
context in predicting the correct electron concentration,
etc., but should nevertheless give a realistic idea about
the shape of the confining potential. Thus simulations for
a split-gate GaAs/Al„Ga, „As heterostructure suggest a
potential which is approximately harmonic for very nar-
row channels. For wider channels the potential shape is
intermediate between that of an harmonic oscillator and
a square well. In the following we will consider the case
of very narrow channels by choosing

m coo
2

VE(x) = x
2

(12)

where coo is a characteristic frequency defining the
strength of the confinement. In zero magnetic field the
sublevels are therefore E„=%coo(n+—,'). The choice in

Eq. (12) has the attractive feature that also the Hamil-
tonian in Eq. (11) is exactly solvable as noted previous-
ly. ~'0 '2 The total confinement is simply given by the
shifted parabola

changing m and E„,

=2 n
~1D (2~ e /g)1/2(~3/2/~ ) g vl/2

v=1
(16)

If the summation is replaced by an integration, we obtain
the approximate relation

~ iD (2~ e /g)1/2( 3/2/ )
2 n 3/2=2 (17)

n= -N' co
3n fi

4 ' 2m'

' 1/2 2/3

which is to be compared with Eq. (5). The slope of Eq.
(18) does not, however, give the electron concentration as
simply as in the 2D case. In the opposite limit of small
fields (higher values of n), Eqs. (16) and (17) show a pro-
nounced departure from linearity in n versus 1/8 as ob-
served in experiments. The general behavior of n(B ') is
illustrated by Fig. 1.

Because of the similarity between Eqs. (5) and (18), it is
now tempting to introduce an effective width 8' for the
parabolic well. If the electrons are assumed to be distri-
buted uniformly over W, the corresponding effective 2D
electron density is

g 2D ~ iD/IV (19)

with

which gives a fair representation of the true form, except
for a small, nearly constant, overall shift. For high fields
(smaller values of n) both equations give a virtually linear
relation between n and 1/8, thus resembling an ordinary
n-versus-(1/8) plot for Shubnikov-de Haas minima in
the 2D case. This is seen by letting co~co, in Eq. (17},
1.e.,

ik y
l(„k (x,y) =P„(x —xo )en, (15)

where g„ is the harmonic-oscillator function centered at
xo. Since the dispersion in Eq. (14) is still parabolic, al-
beit with a heavier mass, Eqs. (8)—(10) remain valid if
only m * and E„are replaced by rn '(8) and E„(B).The
density of states thus becomes more sharply peaked in the
presence of a magnetic field, leading to a greater possibili-
ty of observing structure in the magnetoresistance due to
subband depopulation.

We now consider the dominant structure in the mea-
sured magnetoresistance and associate the minima with a
complete depopulation of the hybrid subbands as 8 is in-
creased. This assumption is reasonable since our hy-
brid oscillations will gradually evolve into ordinary
Shubnikov-de Haas oscillations as the system is made
more extended and/or the magnetic field becomes very
strong. When a particular subband n is just depopulated,
we have EF E„. Hence we get fr——om Eq. (10), after
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FIG. 1. Sublevel index n vs inverse magnetic field 8 ' for
parabolic confinement. The number of electrons per unit length
is held constant (N,' =8)&10 m '), while the strength of the
confinement is varied by means of the characteristic frequency
Np.
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W=2~(X,'D)'"
2/3

3%m cop
(20)

To determine N,' and cop from experiments, one may
proceed in the following way. In a plot fo n versus 1/8
the gradient of the linear region is used to find the prod-
uct (N,' coo) by means of Eq. (18). A fit of the full expres-
sion in Eq. (16) to the data in the nonlinear region then

gives N,' and cop separately.
Figure 2(a) shows the measured magnetoresistance in

an etched Al„Ga, „As/GaAs mesa structure of nominal
width 0.5 pm (Ref. 4). The magnetic field is perpendicu-
lar to the semiconductor interface. The oscillations,
which are reproducible, are attributed to quantum fluc-
tuations and depopulation of hybrid subbands. The latter
becomes dominant at higher fields and the arrows in Fig.
2(a) indicate our assignment of subbands. At lower fields
the structure associated with depopulation of subbands is

masked by quantum fluctuations. A proper assignment is
therefore not feasible in this regime. Figure 2(b) shows
an experimental n-versus-(1/8) plot together with a
theoretical fit as described above. In this way we find

=4.27)&10 m ' and cop ——2.31&10' s ', if a value
of 0.067m, is used for the effective electron mass m'.
Furthermore we find that there are seven occupied sub-
bands before the magnetic field is switched on. Figure 3
shows how these subbands are magnetically depopulated.

Using N,' and cop as given above, the corresponding
value for the effective width is, according to Eq. (20),
8'=138 nm, i.e., much smaller than the nominal width.
Equation (19) gives the effective electron concentration
N, =3X10' m . Our estimate of the width is con-
sistent with the value obtained from an analysis of the
weak-field magnetoresistance, namely 106 nm. This as-
sumes that N, =2.5&(10' m, a value which is ob-
tained from the experimental n(1/8) plot by applying
the 2D expression in Eq. (5) to the linear, high-field re-
gion. In this context it is illuminating also to estimate an
effective width using the low-field region. Naively, one
may say that deviations from linearity in n versus 1/8
appear because the cyclotron-orbit diameter d, becomes
larger than the channel width. This diameter is given by

' 1/2
A'(2n+ 1)

(21)
m 'co,

0

X
IQ-Cl

Z.'

I I

4
B{T}

According to Fig. 2(b), nonlinearity sets in between
8 '=0.6 T ' at level index n =3 and 8 '=0.9 T ' at
n =4. Consequently, we find 110&8'&145 nm, which
nicely brackets our value for $V. The classical turning
points in zero field may also be used to estimate W; co, in

Eq. (21) is then to be replaced by coo. With n =6, the
highest occupied subband, we obtain 8'=200 nm, which
is considerably larger than the previous estimates.
Hence, simple arguments based on semiclassical orbit di-
ameters should be used with some caution.

Finally, we apply the present analysis to the split-gate
heterojunction discussed in the Introduction. For the
most narrow channel the experimental estimates are
N, =(1.5%0. 1)X10' m and 8 =150+20 nm. The
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FIG. 2. (a) Measured magnetoresistance at 2.4 K in an

etched Al„Ga& „As/GaAs mesa structure of nominal width 0.5
pm (Ref. 4) (the conducting channel is along the y axis). Repro-
ducible structure at low fields is attributed to universal conduc-
tance fluctuations. Arrows indicate our assignment of magnetic
depopulation of subbands. (b) Sublevel index n vs inverse mag-
netic field 8 '. Crosses refer to minima in the measured mag-
netoresistance in (a) and circles to theoretical results. The
dashed curve is a free interpolation to guide the eye.
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FIG. 3. Variation of Fermi energy (relative to ground-state
sublevel Eo) and subband occupations N,'„with magnetic field
for the case in Fig. 2.
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present model yields X, =1.57X10' m and 8'=146
nm, i.e., in good agreement with the values derived from
experiments. From the onset of nonlinearity in n (1/B),
we have, from Eq. (21), IV= 140 nm.

III. LIFETIME BROADENING
DUE TO EI.ASTIC SCATTERING

configurational average. Equation (23) ignores the real
part of the self-energy. For parabolic confinement, we
have

/(n, k
f

V;fn', k')
/

=a X dx x —X x —x' 24

where P„(x—xo) and P„,(x —x o) are magnetically dis-

V;(x,y) =a +5(r —Rs ),
g

(22)

where a defines the strength of the scatterer and Rg ran-
dom sites. Effects of lifetime broadening due to V; in Eq.
(22) have recently been examined for the case of multiply
occupied 1D subbands in an infinite square well and zero
magnetic field. ' As usual in a subband situation, the life-
times v„are found to differ from subband to subband and
vary with energy E. Thus scattering is stronger when E
is in the vicinity of a sublevel. Furthermore, ~„ is in-
dependent of k and, because of that, the lifetime and the
transport time are identical for a particular subband in
the case of 5-function scatterers. When a perpendicular
magnetic field is applied as above, this picture breaks
down.

To determine the lifetimes we apply the self-consistent
set of equations'

In the theoretical modeling above we have ignored all
effects of scattering. This should be a good first approxi-
mation since we are dealing with high-mobility semicon-
ductor structures at low temperatures. For the
GaAs/Al„Ga, „As mesa discussed in the preceding sec-
tion (cf. Fig. 2), the mobility is estimated to be 4 m /V s,
which is only a factor of 2 smaller than in wide 2D
electron-gas regions. Using the 2D expression for the
mobility to extract a transport time ~, we estimate the
level broadening DE=II/r to be =0.5 meV. This value
is to be compared with a level separation of
AE =inc()p 1 ~ 5 meV. It then appears that the subbands
are well resolved. Traces of subbands are easily erased,
however. If, for example, the mobility would be some-
what smaller, 1 —2 m /V s let us say, sublevels would be
broadened beyond recognition by lifetime effects, and the
analysis in the preceding section would be pointless.
Here we will illustrate the effects of finite lifetimes on the
density of states by briefly considering elastic scattering
due to weak disorder. In a real system one would, of
course, have to include also other scattering mechanisms,
such as surface roughness, variations in the widths of the
channel, etc. , but the general picture we are looking for
would not change drastically by such refinements.

For simplicity we let the scattering potential be
represented by the random array of 5-function scatterers,
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FIG. 4. Typical behavior of total density of states broadened
by finite lifetimes (dotted curves) and level broadening
1 „„(E)=It/[2r„„(E)]for the ground subband (solid curves).

Case (a) refers to zero magnetic field; the broadening is then in-

dependent of k~. When a magnetic field is applied, the broaden-
ing becomes strongly dependent on k~ as shown in (b) and (c),
referring to B=0.4 and 1 T, respectively (kF is the Fermi wave
vector for the ground subband in zero magnetic field).
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placed harmonic-oscillator functions, Eq. (15), and N; is
the density of scatterers [in the derivation it is convenient
to subtract a term (aN, ) from V;]. The magnetic field

acts in two ways. It leads to a general k„dependence and
a reduction of the scattering matrix elements for large
momentum transfer. The last point is made clear by the
explicit expression for the simplest matrix elements,

—P(x —x ) /2
ky I ~i IO ky'&

I
=a NiPe

with P =m 'co/fi. The exponential damping also appears
in the remaining matrix elements. Because the transverse
wave functions for different wave numbers k~ become
spatially separated by the magnetic field, the matrix ele-
ments for backscattering can thus decrease with increas-
ing magnetic field. For a quantity like w„, this effect is
counteracted by a simultaneous change in the density of
states, which becomes more sharply peaked as 8 in-
creases. The net result is therefore a more complex be-
havior of r„. Figure 4(a), which refers to zero magnetic
field, shows a typical total density of states curve
broadened by finite lifetimes ~„. The same figure also
shows I „(E)=A'/[2r„(E)] for the ground subband. Be-
cause the scattering elements do not depend on k in the
case of 5 scatters, r„ is only a function of energy. Figure
4(b) shows how this situation is changed when the mag-
netic field is turned on. Again, looking at the lowest sub-
band only, we And that I 0 becomes strongly dependent
on k . For larger values of k the reduction in scattering
elements definitely dominates changes in the density of
states. Figure 4(c), finally, shows the case of a relatively
strong magnetic field. Other choices of index n result in
qualitatively similar plots.

In summary, a magnetic field leads to a complex be-
havior of ~„. The broadened total density of states, on
the other hand, transforms in a simple way. Peaks be-
come more widely spaced and increase in magnitude.
This point is important from an experimental point of
view. At zero magnetic field the subband structure may
be masked by lifetime eff'ects and/or quantum fiuctua-
tions ignored in this discussion. In the presence of a
magnetic field, however, the sharpened features of the
density of states should lead to a greater possibility of ob-
serving structure in the conductance owing to subband
population. Although a quantity like conductance indeed
reflects more than just density-of-states effects, this sim-
ple conjecture is in line with the theory of Kearney and
Butcher' and experimental findings. However, it still
remains to formulate a rigorous quantum transport
theory for the present case. Such a theory would have to
include finite lifetimes that depend on k, and, because of
that, transport times which differ from the lifetimes and
are specific for each subband. Although the transport
theory of Smrcka, Havlova, and Ishihara' for a paraboli-
cally confined 2D gas is in this direction, only a single
transport time is introduced.

IV. SUMMARY AND DISCUSSION

In brief, we have considered narrow quantum channels
in which the transverse motion becomes quantized. Be-
cause of the confinement an applied perpendicular field

leads to hybrid magnetoelectric sublevels with a spacing
of levels that is different from the spacing of pure Landau
levels. A plot of level index n versus inverse magnetic
field therefore becomes nonlinear, particularly in the
low-field region in which the cyclotron-orbit diameter
exceeds the characteristic dimension of the well. This
nonlinearity is used here to characterize the channel. If
the confinement is assumed to be parabolic, a simple ana-
lytic result can be derived relating minima in the magne-
toresistance to electron density N,' and coo, the charac-
teristic frequency of the parabolic well. N,' and coo are
easily determined from a best fit to an experimental n-
versus-(1/8) plot. We have also shown how to find a
corresponding effective width and 2D electron density
that agrees well with other, independent estimates.

The parabolic model is designed for narrow channels,
let us say 8'&2000 A. For wider channels it becomes
numerically unreliable because the assumption of a para-
bolic confinement is then less realistic. Instead, one
should think of a potential that flattens in the central re-
gion. However, the mechanism behind magnetic depopu-
lation of hybrid subbands in such a potential would be
the same as for the parabolic well. A drawback is that
one generally would have to resort to a numerical solu-
tion of the Schrodinger equation rather than the simple
analytic treatment available for the present model. For
wide channels the flat region of the potential dominates
and for this reason the detailed form of the confining
walls matters less. In this case the problem could be
simplified to a particle in an infinitely deep rectangular
well plus magnetic field. Approximate, analytic solu-
tions' for this situation could prove useful in the present
context.

Effects of lifetime broadening have been considered
briefly in Sec. III. For random 5-function scatterers it is
shown that the lifetimes become strongly k dependent
when a perpendicular magnetic field is applied. The
reason is that transverse wave functions for different k
values become spatially separated. Matrix elements for
backscattering are therefore exponentially reduced. At
the same time peaks in the density of states become more
sharply peaked and the separation of sublevels is diamag-
netically increased. This enhances the possibility of ob-
serving structure associated with magnetic depopulation
of subbands.

The magnetic separation of the transverse wave func-
tions g„(x—xo) may have profound consequences. Thus
a perpendicular magnetic field causes a charge redistribu-
tion, which is equal and opposite between states k and
—k . In the absence of current no Hall voltage is mea-
sured because there is no net movement of the "center of
charge. " A current fiowing along the channel can be re-
garded as a displacement of the initial Fermi distribu-
tions centered at k =0. This breaks the symmetry for
states close to the Fermi wave vectors. Hence, if a
current flows there is a net rearrangement of charge from
one side of the channel to the other; consequently, a Hall
voltage exists between opposite Hall probes. In the para-
bolic well the displacement xo of the transverse wave
functions is, however, smaller than in very wide channels
in which the displacement is xo. This difference becomes
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more pronounced in weak fields. Consequently, one
should expect anomalies in the Hall voltage for narrow
channels in that limit. One would also expect that such
anomalies grow stronger with decreasing width, and that
they depend on the net current that Aows along the chan-
nel, since a stronger current, for example, causes more
charge to be redistributed across the channel. These

features are not specific to the parabolic well, but are de-
rived from strong confinement in general. Recently,
there have been reports on the anomalous behavior of
Rzy in narrow channels and weak magnetic fields. ' Al-
though suggestive, we find it premature to tie the present
considerations to the observed anomalies.
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