
Universität Regensburg Winter Term 14/15

Quantum Theory of Condensed Matter II

Mesoscopic Physics

Prof. Ferdinand Evers
Dr. Andrea Donarini Fri 12:30, PHY 5.0.20

Sheet 12

1. Master equation for the Anderson impurity model (II)

Let us continue in the derivation of the master equation for the Hamiltonian introduced in the Sheet 4, namely:

H = HS +HB +HT

where

HS =
∑
σ

εd d
†
σdσ + Un↑n↓,

HB =
∑
kσ

εk c
†
kσckσ,

HT =
∑
kσ

τ
(
c†kσdσ + d†σckσ

)
.

By assuming the high temperature limit ( kBT ≫ ~γ where γ = πτ2D
~ and D is the density of states of the

bath) we derived the following time local equation for the reduced density matrix, valid to second order in the
tunnelling Hamiltonian HT:

ρ̇red(t) = −τ2

~2
∑
σ

∫ t

0

dt′[+F (t− t′,+µ) dσ(t)d
†
σ(t

′) ρred(t)

+ F (t− t′,−µ) d†σ(t)dσ(t
′) ρred(t)

− F ∗(t− t′,−µ) dσ(t)ρred(t)d
†
σ(t

′)

− F ∗(t− t′,+µ) d†σ(t) ρred(t)dσ(t
′)

+ Hermitian conjugate].

(1)

where all operators are taken in interaction picture and the bath correlation function F (t− t′, µ) is defined as

F (t− t′, µ) =
∑
k

TrB{c†kσ(t)ckσ(t
′)ρB}

1. Argue that, if we are interested into a time dynamics on time scales larger than the bath correlation time
~β (the so called coarse grained limit) the time integration limit can be moved from the initial time t0 = 0
to t0 = −∞ (Markoff approximation).
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2. Transform the equation from the interaction to the Schrödinger picture. Prove that the result will be:

ρ̇red(t) = − i

~
[HS, ρred(t)]−

τ2

~2
∑
σ

∫ ∞

0

dt′[+F (t′,+µ) dσd
†
σ(−t′) ρred(t)

+ F (t′,−µ) d†σdσ(−t′) ρred(t)

− F ∗(t′,−µ) dσρred(t)d
†
σ(−t′)

− F ∗(t′,+µ) d†σ ρred(t)dσ(−t′)

+ Hermitian conjugate].

(2)

where the density operators are in the Schrödinger picture, while the creation and annihilation operators
of the impurity are still in the interaction picture.

3. In the calculation of the time evolution for isolated system we have already demonstrated that it is
extremely useful for the understanding of the dynamics to write the equations in the energy eigenbasis for
the system. Calculate the energy eigenbasis for the impurity and write Eq.(2) in that basis.

4. Prove that the dynamics of the spin coherences (matrix elements corresponding to different spin projection
Sz of the system) is decoupled from the dynamics of the corresponding populations.

5. Prove that the same decoupling is happening between coherences involving different particle number and
the corresponding populations. Could you imagine a bath for which this decoupling is violated? Why?

6. Prove that the coherent term (the first term in Eq.(2)) does not influence the dynamics of the populations
in the energy eigenbasis.

7. Perform the time integral in Eq. (2) and get to the master equation for populations:

Ṗ0 =− 2γf+(εd)P0 + γ
∑
σ

f−(εd)P1σ

Ṗ1σ =− γ[f+(εd + U) + f−(εd)]P1σ

+ γf+(εd)P0 + γf−(εd + U)P2

Ṗ2 =− 2γf−(εd + U)]P2 + γ
∑
σ

f+(εd + U)P1σ

where
P0(t) ≡ ⟨0|ρred(t)|0⟩P1σ ≡ ⟨1σ|ρred(t)|1σ⟩P2(t) ≡ ⟨2|ρred(t)|2⟩

are the populations of the reduced density matrix with respect to the manybody energy eigenbasis |0⟩, |1 ↑
⟩, |1 ↓⟩, |2⟩ of the impurity. Moreover f+(ϵ) ≡ [1 + eβ(ϵ−µ)]−1 and f−(ϵ) ≡ 1− f+(ϵ).

8. Prove that the stationary solution of the master equation derived in the previous point is:

i) P0 = 1, P1σ = P2 = 0 for µ ≪ εd;

ii) P2 = 1, P1σ = P0 = 0 for µ ≫ εd + U ;

iii) P1σ = 1/2, P0 = P2 = 0 for εd ≪ µ ≪ εd + U.

where inequalities are taken with respect to the thermal energy kBT and the solution iii) can thus be
achieved only in the case U ≫ kBT . Comment the result.

(16 Points)

Frohes Schaffen!
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