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1. Mesoscopic beam splitter

Consider a device with three terminals, up/down symmetry and time reversal symmetry.

1. Show that the scattering matrix can be parametrized as

S =

 r0 t t
t r r′

t r′ r

 (1)

2. Assume real parameters and show that for nonzero t either

t2 =
1− r20

2
, r = −1 + r0

2
, r′ =

1− r0
2

or

t2 =
1− r20

2
, r =

1− r0
2

, r′ = −1 + r0
2

has to hold. What is the maximum value for t2?

3. Consider a fully symmetric system. What changes? Can r become zero?

(6 Points)
2. Mesoscopic Aharonov-Bohm effect

The conductance through a loop which is pierced by a magnetic field B oscillates as a function of the field.
Consider two identical beam splitters with scattering matrices as in equation (1) connected in series through a
ring threaded by a magnetic field. Assume that the magnetic field is nonzero only in the middle region of the
ring and the electrons do not feel a Lorentz force.
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1. Start with B = 0. Suppose that electrons acquire a phase φ when traversing either the upper or the lower
branch of the ring (that is to say the “transmission” amplitude of one branch is eiφ just as it is eikL for
propagation through a piece of free space with length L). Show that the total transmission amplitude t̃
is given by

t̃(φ) = 2 t2eiφ
1− (r − r′)2e2iφ

1− 2 (r2 + r′2) e2iφ + (r2 − r′2)2 e4iφ
.

You can use Maple or Mathematica for the algebra. Show that for real parameters, using the results of
problem 1, that

T ≡ |t̃|2 =
(1− r20)

2

1− 2 r20 cos(2φ) + r40
.

Where are the conductance resonances as a function of φ? What does the resonance condition mean?

2. If the magnetic field is finite, an electron moving clockwise through one of the arms acquires an additional
phase ϕ, while an electron moving counterclockwise acquires an additional phase −ϕ with 2ϕ =

∮
A ·dl =

2πΦ/Φ0. Here Φ is the magnetic flux through the ring and Φ0 = h/e is the magnetic flux quantum. Show
that in this case one gets

t̃(φ, ϕ) = 2 t2 cos(ϕ)eiφ
1− (r − r′)2e2iφ

1− 2 (r2 + r′2 cos[2ϕ]) e2iφ + (r2 − r′2)2 e4iφ
.

The transmission probability |t̃(φ, ϕ)|2 is an oscillating function of Φ. The fundamental frequency is given
by Φ0. These oscillations are called Aharonov-Bohm (AB) oscillations. However also higher harmonics
with periods that are integer fractions of Φ0 are present, for example the Altshuler-Aronov-Spivak (AAS)
oscillations with period Φ0/2. What is the physical origin of the AB and the AAS oscillations? Plot
T (φ, ϕ) for different parameters.

3. Consider the limit of a nearly closed ring r0 = 1 − ∆ and r′ = ∆/2, ∆ ≪ 1. Show that only the
fundamental oscillation survives in leading order in ∆. Explain this observation.

(6 Points)

3. Origin of the memory

First, shortly answer the following questions:

1. Why are the constituting equations of Mechanics, be it classical Newtonian, be it Quantum, local in the
time coordinate?

2. Is this still true also for Relativistic Mechanics?

3. What about Electrodynamics?

Consider now the following toy model:

ẋt = −γxt − γ̃yt

ẏt = −α̃xt − αyt
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where the notation xt and yt simply indicates that x and y are functions of the time. The goal is to write an
equation of motion for the quantity x. First assume α̃ = 0, and deduce that the equation of motion for x has
no memory. As a second step assume α̃ ̸= 0, t > 0. Prove that the quantity x fulfills the equation (with
memory):

ẋt = −γxt − γ̃yhomo
t + γ̃α̃

∫ t

0

dsM(t− s)xs

where yhomo
t is the solution of the homogeneous equation for yt and M(t) = exp(−αt). Finally justify the

Markov approximation in the limit α ≫ γ.

Frohe Weihnachten!
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