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1. Nanostructure in quasi-static non-equilibrium

Consider a nanostructure in which a scattering region is connected by single-transverse-channel reflectionless
leads to a left and right contact at chemical potentials µL and µR respectively (See Fig. 1).
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Figure 1: Schematic set up of a 4 points measurement

1. Calculate the voltage drop ∆VS near to the scatterer if its transmission coefficient T is known. Prove the
relation:

e∆VS = (1− T )(µL − µR)

Hint: Assume the transmission coefficient T to be energy independent within the bias window [µR, µL].
The left and right movers are in local equilibrium in every point of the nanostructure and thus possess
local chemical potentials µ−(x) and µ+(x) respectively. In equilibrium, at zero bias, the density of left
and right movers is the same and the same holds for the associated chemical potentials. Calculate the
excess in the density left and right movers on both sides of the scatterer when a bias is applied and from
the latter the associated local chemical potentials. The voltage drop is given by e∆VS = µ−(L)−µ−(R) =
µ+(L)− µ+(R).

2. Determine the 4-point resistance R4pt = e∆VS/I. How does it compare to the standard definition R =
(µL − µR)/I? Where is the rest of the potential drop happening? Hint: Use the Landauer formula for
calculating the current through the device.

3. We have just demonstrated that the nanostructure has a finite resistance, thus it is dissipating energy.
Nevertheless all processes discussed so far are elastic. Where is the energy dissipated?

(6 Points)

2. Transmission matrix of a single barrier

The scattering matrix S connects the amplitudes of the incoming and outgoing scattering states. The trans-
mission matrix M connects instead the amplitudes of the states on one side of the scatterer to the ones on the
other side.
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where Oα (Iα) is the amplitude of the outgoing (ingoing) scattering state in the lead α ( α = l, r).

1. We parametrize the scattering matrix S in the form

S =

(
rl tlr
trl rr

)
Prove that the M matrix takes the form:

M =

(
t−1
lr −rlt

−1
lr

rrt
−1
lr − det(S)t−1

lr

)
2. Prove that the determinant of a scattering matrix is a complex number of modulus 1. Hint: use the fact

that the flux of particle is conserved in a scattering event.

(4 Points)

3. Transmission of a double barrier

Consider now the case of a double scatterer. Assume each of the sattering regions charaterized by the scattering
matrix Si (i = 1, 2).

1. Prove that the transmission matrix for the composed nanostructure can be written as the matrix multi-
plication of the two transmission matrices. Is the order in the multiplication important?

2. Calculte the tunneling probability through the entire nanostrucure. Prove that it reads:

T12 =
T1T2

1− 2
√
R1R2 cos θ +R1R2

where Ti = |t(i)lr |2 is the transmission probability through the i-th scattering region and Ri = 1−Ti = |r(i)α |2

with α = l, r and θ = arg(r
(2)
r r

(1)
l )− arg[det(S1) det(S2)]. Hint: Start by identifying which element of the

transmission matrix is needed to calculate the transmission probability. Evaluate in the second step the
composite transmission matrix and calculte the result.

3. Interpret the result found in the previous point. In particular, which is the meaning of the cos θ term
apprearing in the denominator?

(6 Points)

Frohes Schaffen!
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