Winter Term 14/15

Quantum Theory of Condensed Matter II

Mesoscopic Physics

Prof. Ferdinand Evers Dr. Andrea Donarini

Fri 12:30, PHY 5.0.20

Sheet 7

1. Thouless energy

The Thouless energy for a system with linear dimension L is defined as $E_c = \hbar/\tau_L$, where τ_L is the time it takes to a particle to diffuse from one side to the other of the system. Prove the following relation

$$g_L = \frac{E_c}{\Delta_L}$$

where g_L is the dimensionsless conductance and Δ_L the average distance between two energy levels.

(3 Points)

2. The 2 dimensional scaling function for symplectic symmetry.

The asymptotic form of the scaling function β for 2 dimensional systems with spin-orbit scattering (symplectic case) reads

$$\beta(g) = \begin{cases} 1/2\pi g & : g \gg 1\\ \ln(g/g_0) & : g \ll 1 \end{cases}$$

Describe the scaling behaviour of g_L with increasing system size depending of the initial value g_ℓ . Assume that the entire qualitative behaviour of β can be correctly extracted out of minimal extrapolations from the asymptotic limits.

(3 Points)

3. Quantum corrections to the conductivity in 1, 2 and 3 dimensions

As shown in the lecture, the leading quantum corrections to the conductivity can be written as:

$$\delta\sigma_{\rm WL} = -\frac{e^2}{\pi}D\int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^d}\frac{1}{Dq^2 - i\omega}$$

1. Show that:

$$\delta \sigma \approx \begin{cases} -\frac{\sigma_0}{(k_F \ell)^2} & d = 3\\ -\frac{e^2}{2\pi \hbar} \ln\left(\frac{L_\omega}{\ell}\right) & d = 2\\ -\frac{e^2}{2\pi \hbar} L_\omega & d = 1 \end{cases}$$

where $L_{\omega} = \left(\frac{D}{-i\omega}\right)^{1/2}$ and $\sigma_0 = e^2 \nu D$ and the upper limit of the radial integrals is set to $\pi/(2\ell)$.

2. $\delta\sigma$ is the result of a perturbation theory. Which is the dimensionless small parameter used to perform the calculation? In the answer the same for all dimensions?

(4 Points)

Frohes Schaffen!