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1. Gaussian disorder

Consider the disordered potential

U(r) =

∫
dxv(x)δρ(r+ x)

where δρ(r) =
∑

i δ(r− ri)− n describes the spatial oscillation of the density of scattering centers. The latter
are located in the positions ri and n represents the average density of the scattering centers. Assume that the
positions of the scattering centers are completely uncorrelated. In this exercise you will prove step by step that
the probability P associated to a specific configuration U(r) of the disorder is given by

P{U(r)} = N exp

(
− 1

2V

∑
k

|Uk|2/nv2k

)

in the limit in which v(r = 0) → 0 and n → ∞, but nv(0)2 remains constant. N is a normalization constant,
while Uk and vk are the Fourier components of the disorder potential U(r) and the single (impurity) potential
v(r), respectively.

1. As a first step, show that, for uncorrelated scatterers -i.e their position is completely randomized - in the
limit of infinite system size V it holds

⟨δρ(x1)δρ(x2)⟩ = δ(x1 − x2)n

⟨δρ(x1)δρ(x2)δρ(x3)δρ(x4)⟩ = nδ(x1 − x2)δ(x1 − x3)δ(x1 − x4)

+n2(δ(x1 − x2)δ(x3 − x4) + Permut.) (1)

Hint: The averages should be intended as normalized integrals over the impurity positions.

2. As a second step, prove that, in the limit introduced above, it holds:

⟨U(r1)U(r2)U(r3)U(r4)⟩ = ⟨U(r1)U(r2)⟩⟨U(r3)U(r4)⟩+ Permut.

and calculate ⟨U(r)U(r′)⟩.

3. Finally, use the representation of P as average of the product of δ-functions

P{U(r)} ∝ ⟨Πkδ(Uk − δρkv−k)⟩

Make usage of the known representation of the delta function in terms of Fourier transform. Expand in
terms of δρ and in this way calculate the average (Cumulant expansion).

(6 Points)

2. Conductivity diagrams

Demonstrate that the following class of diagrams gives a non-divergent contribution to the conductivity:

1. Rewrite the digrams in terms of sum over momenta and sum them with the help of the geometrical series
(−→ Diffuson, compare withe the lecture).
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2. Perform two of the three remaining sums using the techniques described in the lecture and show that the
pole of the diffuson implies a non divergent contribution from the last summation.

(4 Points)

Frohes Schaffen!
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