Quantum Theory of Condensed Matter II

Mesoscopic Physics

Prof. Ferdinand Evers Dr. Andrea Donarini

Fri 12:30, PHY 5.0.20

Sheet 4

1. Kubo formula for a uniform external perturbation (q = 0)

In this exercise you will derive the Kubo formula for non-interacting electrons in a uniform electric field \mathbf{E} . The interaction between the electrons and the electric field is well described in this case by the dipole coupling.

$$\hat{V}(t) = e\hat{\mathbf{X}}\cdot\mathbf{E}(t)$$

where e is the (absolute value of the) electronic charge and $\hat{\mathbf{X}} = \sum_{i} \hat{\mathbf{r}}_{i}$ with $\hat{\mathbf{r}}_{i}$ the position operator of the *i*-th electron.

1. Prove that the dipole moment operator for a collection of electrons reads $\hat{\mathcal{P}} = -e\hat{\mathbf{X}}$, thus justifying the coupling Hamiltonian. Moreover, prove that the current operator reads instead $\hat{\mathcal{J}} = -e\hat{\mathbf{P}}/m = -e/m\sum_{i}\hat{\mathbf{p}}_{i}$ where $\hat{\mathbf{p}}_{i}$ is the momentum operator of the *i*-th electron.

Hint: Start from the definition of the density and current density operators in first quantization.

2. Describe the perturbation on the current $J(t) \equiv \langle \hat{\mathcal{J}} \rangle$ within the linear response theory. Calculate explicitly the response function in the frequency domain, thus obtaining the classical result

$$\sigma_{\alpha\beta}(\omega) = i \frac{e^2 n}{m\omega} \,\delta_{\alpha\beta}$$

Hint: The following representation of the step function could be of interest:

$$\theta(t) = \lim_{\eta \to 0^+} \int \frac{\mathrm{d}\omega}{2\pi} e^{-i\omega t} \frac{i}{\omega + i\eta}$$

3. Use than the relation $\dot{\mathbf{X}} = \mathbf{P}/m$ and a partial integration to obtain, starting from the linear response expression of 1.2, the more familiar Kubo formula

$$\sigma(\omega) = \frac{i}{\omega} \left(\mathbf{\Pi}(\omega) + \frac{e^2 n}{m} \right)$$

where the polarization $\mathbf{\Pi}(\omega)$ reads, in components:

$$\Pi_{\alpha\beta}(\omega) = \frac{i}{\hbar V} \int_0^{+\infty} \mathrm{d}t \, \langle [\hat{\mathcal{J}}_{\beta}, \hat{\mathcal{J}}_{\alpha}(t)] \rangle_0 \, e^{i\omega t},$$

with V the volume of the system and $\langle \bullet \rangle_0$ the thermal average with respect to the unperturbed, free electron Hamiltonian.

4. Prove that:

$$\Pi_{\alpha\beta}(\omega=0) = -\frac{e^2n}{m}\delta_{\alpha\beta}.$$

Do you see any contradiction with the results obtained at points 1.2 and 1.3?

(8 Points)

2. Classical limit of the Kubo formula

In the lecture the following expression for the conductivity of charged Fermions has been derived

$$\sigma_{\rm xx}(\omega) = i \frac{e^2}{\omega V} \sum_{\rm n,m} |v_{\rm nm}|^2 \frac{f(\epsilon_{\rm n}) - f(\epsilon_{\rm m})}{\epsilon_{\rm n} - \epsilon_{\rm m} + \hbar\omega + i\eta} + i \frac{e^2 n}{m\omega},\tag{1}$$

where V is the volume of the system and v_{nm} is the matrix element of the velocity operator in the single particle basis.

Derive the Kubo formula in the classical (*i.e.* non-degenerate) limit in which the Fermi-Dirac distribution is approximated by $f(\epsilon) \approx e^{-\beta(\epsilon-\mu)}$.

- 1. First simplify equation (1) by means of the given approximation for $f(\epsilon)$ and expand the numerator in powers of the difference $\beta(\epsilon_n \epsilon_m)$.
- 2. Divide the resulting sum in two terms. One term is proportional to ω^{-1} and cancels exactly the diamagnetic term in equation (1). Bear in mind that, in the classical limit the following substitution holds

$$1/V \operatorname{Tr}[v_{\mathbf{x}}e^{-\beta H/2}v_{\mathbf{x}}e^{-\beta H/2}] = n\langle v_{\mathbf{x}}^2 \rangle = nkT/m,$$

where the square parentheses represent the thermal single particle average.

3. Analogously, derive from the second term the classical result already derived in Sheet 2.

(6 Points)

Frohes Schaffen!