Quantum Theory of Condensed Matter II

Mesoscopic Physics

Prof. Ferdinand Evers Dr. Andrea Donarini

Fri 12:30, PHY 5.0.20

Sheet 2

1. Density of states

The density of states is a basic quantity useful to characterize a physical system. Fingerprints of the shape of the density of states are observed both in the equilibrium state and non-equilibrium dynamics.

- 1. For an electron gas in zero (quantum dot), one (quantum wire), two (2DEG), and three (bulk) dimensions, calculate the density of states $\rho(E)$ making use of the effective mass approach. Sketch the function $\rho(E)$ taking into account the level quantization for the low dimensional systems.
- 2. For each of the cases calculate also the compressibility $\frac{dn}{d\mu}$ where n is the particle density and μ the chemical potential (*i.e.*, at T = 0, the Fermi energy) for the system.
- 3. What changes if the electrons follow a linear dispersion relation?

(4 Points)

2. Einstein's relation

The classical Drude formula $\sigma = \frac{e^2 n \tau_{tr}}{m}$ expresses the conductivity of a system in terms of the electric charge e, the (effective) mass m, the density n of the charge carriers and their momentum relaxation time τ_m .

- 1. Derive the classical Drude formula starting from the the equation of motion for the (average) momentum in presence of momentum relaxation and of an external electric field: $\dot{\mathbf{p}} = -\mathbf{p}/\tau_{tr} e\mathbf{E}$.
- 2. The diffusion coefficient D is connected to the Fermi velocity $v_{\rm F}$ and the momentum relaxation time $\tau_{\rm tr}$. via the relation $D = v_{\rm F}^2 \tau_{\rm tr}/d$ where d is the dimensionality of the system. Calculate the conductivity according to the Einstein relation $\sigma = e^2 D \rho(E_{\rm F})$ where $\rho(E_{\rm F})$ is the density of states at the Fermi energy and compare it with the result obtained from the classical Drude formula. Do the calculation for one, two and three dimensions.
- 3. Establish that the Einstein's relation and the classical Drude formula are equivalent only under the condition $\frac{v_{F^2}}{d} \frac{dn}{d\mu}|_{\mu=E_F} = \frac{n}{m}$. Consequently, discuss the generality of the result.

(4 Points)

3. Liouville's theorem

Consider a set of N identical independent particles classically described by their positions (\mathbf{q}_i) and momenta (\mathbf{p}_i) . Their dynamics is governed by the Hamiltonian $H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + V(\mathbf{q}_i)$.

1. Let us now introduce the time dependent distribution $\mathcal{G}(\mathbf{q}, \mathbf{p}, t)$ defined on the 6-dimensional configuration space:

$$\mathcal{G}(\mathbf{q}, \mathbf{p}, t) = \sum_{i=1}^{N} \delta(\mathbf{q} - \mathbf{q}_{i}(t)) \delta(\mathbf{p} - \mathbf{p}_{i}(t)),$$

where δ is the Dirac delta distribution function. Prove that the distribution \mathcal{G} satisfies the equation of motion:

$$\frac{\partial \mathcal{G}}{\partial t} + \frac{1}{m} \mathbf{p} \cdot \nabla_{\mathbf{q}} \mathcal{G} + \mathbf{F} \cdot \nabla_{\mathbf{p}} \mathcal{G} = 0,$$

where we have introduced the force $\mathbf{F} \equiv -\nabla_{\mathbf{q}} V$. Compare the result with the Boltzmann equation derived in class.

2. Verify that the integral of \mathcal{G} over the entire configuration space is conserved *i.e.*:

$$N = \int \mathrm{d}\mathbf{q} \mathrm{d}\mathbf{p} \, \mathcal{G}(\mathbf{q}, \mathbf{p}, t), \qquad \forall t.$$

3. The conservation of the number of particles is not only a global property of \mathcal{G} . Prove that also the following relation holds:

$$\mathcal{G}(\mathbf{q}, \mathbf{p}, t) \mathrm{d}\mathbf{q} \mathrm{d}\mathbf{p} = \mathcal{G}(\mathbf{q}', \mathbf{p}', t') \mathrm{d}\mathbf{q}' \mathrm{d}\mathbf{p}'$$

where \mathbf{q}' and \mathbf{p}' are the coordinate and momentum at time t' of a particle that had coordinate and momentum \mathbf{q} and \mathbf{p} at time t and is described by the Hamiltonian $H = p^2/2m + V(\mathbf{q})$. Hint: The most difficult part is the proof of the differential volume conservation in d dimensions. Verify

that the determinant of the Jacobian corresponding to the infinitesimal transformation $\bar{p}' = \bar{p} + \dot{\bar{p}} dt$ and $\bar{q}' = \bar{q} + \dot{\bar{q}} dt$ equals 1 up to first order in dt.

(4 Points)

Frohes Schaffen!