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1. The quasiclassical action of a damped harmonic oscillator (DHO)

Let us consider, as in the question 1.5 of Sheet 10 a harmonic oscillator with potential V (Q) =
1
2Mω2

0Q
2 interacting with a heat bath described by the force-force correlator ⟨F̂ (t)F̂ (0)⟩B = R(t)+

iI(t). The propagating function is then written in the form:

JFV(ηf , ζf , t; ηi, ζi, 0) =

∫
DηDζ e

i
~S[η,ζ] (1)

where the path integral is extended to all the paths η and ζ satisfying the boundary conditions ηf = η(t)

ζf = ζ(t)
and

 ηi = η(0)

ζi = ζ(0)
(2)

The action S was analyzed in detail in Sheet 10 as the combination of a time local and time
non local contributions

S = SL + SNL. (3)

Moreover, let us de�ne the paths ηcl and ζcl as the ones that minimize the action S. They are
de�ned (in the harmonic oscillator case considered here) by the equations: η̈(s) + d

ds

∫ s

0
dt′ γ(s− t′)η(t′) + ω2

0η = i
~M

∫ t

0
dt′R(s− t′)ζ(t′)

ζ̈(s)− d
ds

∫ t

s
dt′γ(t′ − s)ζ(t′) + ω2

0ζ = 0

(4)

1. Show that, when evaluated on the classical paths, the action S can be casted into the form:

S[ηcl, ζcl] = M(η̇fζf − η̇iζi)−
i

2~

∫ t

0

ds

∫ t

0

dt′ζcl(s)R(s− t′)ζcl(t
′) (5)

2. The boundary values of the paths are real by construction. Nevertheless, due to the imaginary
kernel that mixes in the equation (4), the classical path ηcl cannot be taken as real. The path

ζcl is instead real (why?). We introduce the notation ηcl = η
(1)
cl + iη

(2)
cl to distinguish the real

and imaginary components. It follows that η
(2)
cl is the solution of:

η̈
(2)
cl (s) + ω2

0η
(2)
cl (s) +

d

ds

∫ s

0

dt′γ(s− t′)η
(2)
cl (t′) =

1

M~

∫ t

0

dt′R(s− t′)ζcl(t
′) (6)



Show, using (5), that the classical action can be expressed in terms of η
(1)
cl only, i.e.:

S[ηcl, ζcl] = S∗[η
(1)
cl , ζcl] = M(η̇

(1)
f ζf − η̇

(1)
i ζi) +

i

2~

∫ t

0

ds

∫ t

0

ds′ζcl(s)R(s− s′)ζcl(s
′). (7)

Hint: to prove (7) �rst show that

i

~

∫ t

0

ds

∫ t

0

ds′ζcl(s)R(s− s′)ζcl(s
′) = iM(η̇

(2)
f ζf − η̇

(2)
i ζi).

2. The propagating function of a DHO

The propagating function can be calculated starting from the quasiclassical action obtained in the
previous point by accounting for the quantum �uctuations about the classical paths. Due to the
form of the system hamiltonian, the quantum �uctuations only enter the normalization factor and
the propagating function takes the form:

JFV(ηf , ζf , t; ηi, ζi, 0) = e
i
~S[ηcl,ζcl]N(t, 0)

The prefactor N(t, 0) can be calculated by exploiting that, due to conservation of probability, is:∫
dQf ρred(Qf , Qf , t) = 1. (8)

To this extent:

1. Show that: ∫
dηfJFV (ηf , ζf = 0, t; ηi, ζi, 0) = δ(ζi) (9)

where δ indicates the Dirac delta.

Hint: Use the de�nition of JFV in terms of total system propagators, the factorizability of
the initial density matrix and the fact that Tr{ρ} = 1 for a generic density matrix ρ if the
trace is taken over the entire Hilbert space where ρ is de�ned.

2. Using (9) demonstrate that:

N(t, 0) =
M

2π~|G2(t)|
(10)

where, as discussed in the lecture, G2(t) is one of the fundamental solutions of the classical
Langevin equation for the DHO. In particular, its Laplace transform reads:

G̃2(z) =
1

z2 + γ̃(z)z + ω2
0

where γ̃ is the Laplace transform of the damping kernel.

Frohes Scha�en!


