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1. Extremal paths

Consider a quantum system de�ned by the Hamiltonian

HS =
P 2

2M
+ V (Q)

where Q is a generalized coordinate and P is the momentum canonically conjugated of Q. If the
system is coupled to a set of harmonic oscillators in thermal equilibrium, it is possible to express the
evolution of the reduced density matrix for the system, in the position representation, in presence
of the bath via the the formula:

ρred(Qf , Q
′
f , t) =

∫
dQi

∫
dQ′

i ρS(Qi, Q
′
i, 0)JFV(QfQ

′
f t,QiQ

′
i0)

where ρS(Qi, Q
′
i, 0) is the density matrix for the system at time t = 0 and the propagating function

JFV reads

JFV =

∫
DQ

∫
DQ′ A[Q]A∗[Q′]FFV[Q,Q′; t].

In this last formula A[Q] stands for the propagator of the isolated system calculated along the path
Q(t), while FFV[Q,Q′; t] is the Feynman-Vernon in�uence functional. If the system is coupled to
the bath linearly in the bath coordinates, the in�uence functional can be written as:

FFV[Q,Q′; t] = exp(−ΦFV[η, ξ])

where

ΦFV[η, ζ] =
1

~2

∫ t

0

dt′
∫ t′

0

dt′′[ζ(t′)R(t′−t′′)ζ(t′′)+i2ζ(t′)I(t′−t′′)η(t′′)]+
iMγ(0+)

~

∫ t

0

dt′ζ(t′)η(t′)

and in the latter we have used the real and imaginary parts of the force-force correlator ⟨F (t)F (t′)⟩ =
R(t − t′) + iI(t − t′) and also the dissipative kernel γ(t). We have also introduced the center of
mass and relative coordinates η and ζ respectively, de�ned as:

η(τ) =
1

2
[Q(τ) +Q′(τ)]

ζ(τ) = Q(τ)−Q′(τ)

1. Verify that the propagating function JFV contains both a contribution local and non-local in
time and prove that it can be cast into the form:

JFV =

∫
Dη

∫
Dζe

i
~SL[η,ζ]e

i
~SNL[η,ζ]



where the local contribution to the action SL[η, ζ] reads

SL[η, ζ] =

∫ t

0

dt′[Mη̇ζ̇ + V (η − ζ/2)− V (η + ζ/2)−Mγ(0)ζ(t′)η(t′)]

while the non-local contribution SNL[η, ζ] reads

SNL[η, ζ] =
i

~

∫ t

0

dt′
∫ t′

0

dt′′[ζ(t′)R(t′ − t′′)ζ(t′′) + i2ζ(t′)I(t′ − t′′)η(t′′)]

2. Prove the paths that minimize the action S = SL +SNL are solutions of the coupled integro-
di�erential equations:


0 = −Mζ̈(s) + ∂

∂η [V (η − ζ/2)− V (η + ζ/2)]− 2
~
∫ t

s
dt′ζ(t′)I(t′ − s)−Mγ(0)ζ(s)

0 = −Mη̈(s) + ∂
∂ζ [V (η − ζ/2)− V (η + ζ/2)]− 2

~
∫ s

0
dt′I(s− t′)η(t′)−Mγ(0)η(s)

+ i
~
∫ t

0
dt′R(s− t′)ζ(t′)

(1)

Hint you should calculate �rst δS and set it equal to zero for every variation δη and δζ of the
independent paths η and ζ. Remember also that for the real part of the force-force correlator
R(t) = R(−t).

3. Prove that, according to the result derived at the previous point, in the absence of noise
ζ ≡ 0 the variable η satis�es the classical noiseless Langevin equation

Mη̈(s) +M

∫ s

0

dt′ γ(s− t′)η̇(t′) +Mγ(s)η(0) +
d

dη
V (η) = 0

Hint: it is useful to remember the relation connecting the imaginary component of the force-
force correlator to the dissipative kernel: I(t) = ~M

2
d
dtγ(t)

4. Now calculate the semiclassical limit obtained by reintroducing the �uctuations ζ, but just
to the second order (Gaussian �uctuations). Prove that the result is

η̈(s) + d
ds

∫ s

0
dt′ γ(s− t′)η(t′) + 1

M
d
dηV (η) = i

~M
∫ t

0
dt′R(s− t′)ζ(t′)

ζ̈(s)− d
ds

∫ t

s
dt′γ(t′ − s)ζ(t′) + 1

M
d2

dη2V (η)ζ = 0

(2)

5. Specialize the result obtained at the previous point to the case of an harmonic oscillator
V (Q) = 1

2Mω2
0Q

2. The Gaussian approximation is exact in this case, why?

Frohes Scha�en!


