Density Matrix Theory

Prof. Milena Grifoni
H33 Tuesdays, 10:15
Dr. Andrea Donarini
9.1.09 Tuesdays, 13:15

Sheet 9

1. Real time dynamics of a q-bit coupled to an external bath

Consider the spin boson Hamiltonian:

$$
\begin{equation*}
H=H_{\mathrm{S}}+H_{\mathrm{S}-\mathrm{B}}+H_{\mathrm{B}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{\mathrm{S}} & =-\frac{\hbar}{2}\left(\epsilon \sigma_{z}+\Delta \sigma_{x}\right) \\
H_{\mathrm{S}-\mathrm{B}} & =\frac{1}{2} \sigma_{z} \sum_{\alpha} \hbar \nu_{\alpha}\left(b_{\alpha}^{\dagger}+b_{\alpha}\right)+\Delta V \\
H_{\mathrm{B}} & =\sum_{\alpha} \hbar \omega_{\alpha} b_{\alpha}^{\dagger} b_{\alpha}
\end{aligned}
$$

The stochastic properties of H are characterized by the spectral density $G(\omega) \equiv \sum_{\alpha} \nu_{\alpha}^{2} \delta(\omega-$ ω_{α}).

1. Prove that the transformation to the energy eigenbasis of H_{S} can be written as a rotation

$$
\begin{aligned}
|1\rangle & =\cos \frac{\theta}{2}|\uparrow\rangle-\sin \frac{\theta}{2}|\downarrow\rangle \\
|2\rangle & =\sin \frac{\theta}{2}|\uparrow\rangle+\cos \frac{\theta}{2}|\downarrow\rangle
\end{aligned}
$$

where $|1\rangle,|2\rangle$ are the energy eigenstates. Determine θ as a function of ϵ and Δ.
2. Prove that the Hamiltonian (1), in the basis that diagonalizes H_{S} reads:

$$
H=-\frac{\hbar}{2} \Delta_{b} \sigma_{z}^{\prime}+\frac{1}{2}\left(\frac{\epsilon}{\Delta_{b}} \sigma_{z}^{\prime}-\frac{\Delta}{\Delta_{b}} \sigma_{x}^{\prime}\right) \sum_{\alpha} \hbar \nu_{\alpha}\left(b_{\alpha}^{\dagger}+d_{\alpha}\right)+\Delta V+H_{\mathrm{B}}
$$

where $\Delta_{b}=\sqrt{\epsilon^{2}+\Delta^{2}}$.
3. Using the general expression for the time evolution of the two level system coupled to a bath derived in the lecture prove that (neglecting the Lamb shift):

$$
\begin{aligned}
\rho_{\uparrow \uparrow}(t) & =\cos \theta\left[e^{-\Gamma_{r e l} t}\left(\rho_{11}(0)-\rho_{11}(\infty)\right)+\rho_{11}(\infty)\right]+\sin ^{2} \frac{\theta}{2} \\
& +\sin \theta e^{-\Gamma_{\phi} t}\left[\operatorname{Re}\left(\rho_{12}(0)\right) \cos \left(\Delta_{b} t\right)+\operatorname{Im}\left(\rho_{12}(0)\right) \sin \left(\Delta_{b} t\right)\right]
\end{aligned}
$$

where $\rho_{11}(\infty)=e^{-\beta E_{1}} / Z$ represent the thermodynamic limit and the relaxation and dephasing rates $\Gamma_{r e l}$ and Γ_{ϕ} read respectively

$$
\begin{aligned}
\Gamma_{r e l} & =\frac{\pi}{2} \frac{\Delta^{2}}{\Delta_{b}^{2}}\left[G\left(-\Delta_{b}\right) N\left(-\Delta_{b}\right)+G\left(\Delta_{b}\right) N\left(\Delta_{b}\right)\right] \\
\Gamma_{\phi} & =\frac{\Gamma_{r e l}}{2}+\frac{\epsilon^{2}}{\Delta_{b}^{2}} \pi \lim _{\omega \rightarrow 0} G(\omega) \operatorname{coth}\left(\frac{\beta \hbar \omega}{2}\right)
\end{aligned}
$$

where $N(\omega)=\operatorname{coth}\left(\frac{\beta \hbar \omega}{2}\right)+1$.
4. The system-bath coupling is proportional to σ_{z}. The expectation value of the generalized dimensionless system coordinates reads correspondingly $\langle\tilde{Q}\rangle=\rho_{\uparrow \uparrow}-\rho_{\downarrow \downarrow}$. Calculate the time evolution of $\langle\tilde{Q}\rangle$ for the initial condition $\hat{\rho}(0)=|\uparrow\rangle\langle\uparrow|$. Prove that the result is:

$$
\langle\tilde{Q}\rangle(t)=\left[\frac{\epsilon^{2}}{\Delta_{b}^{2}}-\langle\tilde{Q}\rangle(\infty)\right] e^{-\Gamma_{r e l} t}+\langle\tilde{Q}\rangle(\infty)+\frac{\Delta^{2}}{\Delta_{b}^{2}} e^{-\Gamma_{\phi} t} \cos \left(\Delta_{b} t\right)
$$

where $\langle\tilde{Q}\rangle(\infty)$ is the expectation value of \tilde{Q} at equilibrium and can be obtained from the thermodynamic limit $\rho_{i i}=\frac{e^{-\beta E_{i}}}{Z}$ where $i=1,2$ label the energy eigenvalues of the system Hamiltonian.

2. Free propagator and classical action

Consider the propagator $K\left(x_{f} t, x_{i} t_{0}\right)$ defined as by the relation:

$$
K\left(x_{f} t, x_{i} t_{0}\right) \equiv\left\langle x_{f}\right| U\left(t, t_{0}\right)\left|x_{i}\right\rangle
$$

as the matrix representation in space of the time evolutor $U\left(t t_{0}\right)$ associated to the Schrödinger equation.

1. Prove that the propagator for the free particle can be written in the form:

$$
K\left(x_{f} t, x_{i} t_{0}\right)=\sqrt{\frac{m}{2 \pi \hbar i\left(t-t_{0}\right)}} \exp \left(\frac{i}{\hbar} \frac{m\left(x_{f}-x_{i}\right)^{2}}{2\left(t-t_{0}\right)}\right)
$$

Hint: Use the fact that the Hamiltonian H for the free particle is time independent to get a simple expression of the propagator in terms of H. Simplify the expression of the propagator by making use of the completeness relation $\mathbf{1}=\sum_{n}\left|\phi_{n}\right\rangle \phi_{n} \mid$ where $\left|\phi_{n}\right\rangle$ is a set of complete eigenstates of the Hamiltonian.
2. Prove that the quantum propagator introduced in the previous point can be written also in terms of the classical action:

$$
K\left(x_{f} t, x_{i} t_{0}\right)=\sqrt{\frac{m}{2 \pi \hbar i\left(t-t_{0}\right)}} \exp \left(\frac{i}{\hbar} S_{\mathrm{cl}}\right)
$$

where S_{cl} is the action functional of the classical path x_{cl}.
Hint: Start by proving that the classical path for a free particle can be parametrized with time as:

$$
x_{\mathrm{cl}}(s)=x_{i}+\frac{x_{f}-x_{i}}{t-t_{0}}\left(s-t_{0}\right)
$$

and remember the definition of action S of the path x

$$
S[x]=\int_{t_{0}}^{t} \mathrm{~d} s\left(\frac{m \dot{x}^{2}}{2}-V(x)\right)
$$

Frohes Schaffen!

