Density Matrix Theory

Prof. Milena Grifoni Dr. Andrea Donarini H33 Tuesdays, 10:15 9.1.09 Tuesdays, 13:15

Sheet 2

1. Eigenstates, pure states, mixed states

Let us consider a quantum ring described by the Hamiltonian:

$$H = \sum_{\alpha=1}^{N} \left[\varepsilon c_{\alpha}^{\dagger} c_{\alpha} + b(c_{\alpha+1}^{\dagger} c_{\alpha} + c_{\alpha}^{\dagger} c_{\alpha+1}) \right]$$

where c^{\dagger}_{α} creates a (spinless) electron on the α site and we impose periodic boundary conditions: $c_{N+1} = c_1$.

1. Prove that the single particle eigenvectors $|\ell\rangle$ of the system can be written as:

$$|\ell\rangle \equiv c_{\ell}^{\dagger}|0\rangle = \frac{1}{\sqrt{N}}\sum_{\alpha=1}^{N}e^{-i\ell\frac{2\pi}{N}\alpha}c_{\alpha}^{\dagger}|0\rangle,$$

where $\ell = 0 \dots N - 1$ and $|0\rangle$ is the vacuum state. Prove also that the corresponding eigenvalues are

$$E_{\ell} = \varepsilon + 2b \cos\left(\frac{2\pi}{N}\ell\right).$$

2. Calculate the time evolution of the eigenvector $|\ell\rangle$ and prove that after a time interval

$$T = \left[\varepsilon + 2b\cos(\frac{2\pi\ell}{N})\right]^{-1} \frac{2\pi\ell}{N}\hbar$$

the vector is rotated in space of an angle $2\pi/N$ with respect of the initial vector. Is this rotation physical? What happens if we measure the energy starting from another reference point?

(Hint: Due to the geometry of the system, a rotation in space of an angle $2\pi/N$ brings the position basis vector $|\alpha\rangle$ into the vector $|\alpha + 1\rangle$).

- 3. Calculate now the time evolution of the pure state $|\ell\rangle\langle\ell|$. Prove that the density matrix is stationary in whatever basis. Comment the result.
- 4. Consider now the time evolution of the pure state $|\psi\rangle\langle\psi|$, where $|\psi\rangle = a|\ell_1\rangle + b|\ell_2\rangle$ with $\ell_1 \neq \ell_2$ and $|a|^2 + |b|^2 = 1$. Prove that this time the density matrix is evolving in time if $E_{\ell_1} \neq E_{\ell_2}$. Prove that the evolution, at least at finite time intervals can be interpreted as a rotation in space. Find the period of the rotation.
- 5. Finally consider as an initial condition a mixed state of energy eigenstates: $\rho(t = 0) = \sum_{\ell=0}^{N-1} p_{\ell} |E_{\ell} \rangle \langle E_{\ell} |$. Is this density matrix evolving in time?
- 6. Visualize all the results obtained in the previous points using the time evolution code developed for the previous exercise sheet and extending it to the generic N site system.

Frohes Schaffen!