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1. Combination of S-matrices and the double-) potential

Consider a quasi-1D wire (only 1 propagating mode) with two identical scatterers scatterers at x = 0 and x = d
respectively. The scattering potential is approximated by

U(z) = Up [6(x) + 6(z — d)] - (1)
(a) Show that the transmission and reflection reflection probabilities are given by
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with the velocity v = \/2E/m.

(Hint: Remember the special matching conditions for the wavefunctions at a —like potential from QM I.)

(b) Use the procedure of coherent S-matrix combination to show that the total transmission probability is
given by
T2
= L 2 (3>
1 —2R;y cos(d) + Ry

with § = 2 [dmv/h + tan™! (hv/Up)] and plot T(E) for Uy = 9eVA, d =50A and 0 < E < 250 meV.

T =T(E)

(c) e Resonant transmission: Although the individual transmission probability 7} is usually very small, T
can become large for certain resonant energies. What is the maximum value for T'? For strong scatterers
Up > hv, calculate the positions of the resonances F,,.
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2. Transfer matrix formalism and the double barrier potential

While the scattering matrix S connects incoming and outgoing waves, the transfer matriz 7 connects waves on
the left side and waves on the right side of a scatterer in a (quasi-)onedimensional problem.
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In the schematic notation of the figure, the transfer matrix is defined as
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e Show that for a scatterer with transmission and reflection amplitudes ¢ and r for particles coming from
the left and ¢’ and 7’ for particles coming from the right

1 1
_tr B S
r 7'

the transfer matrix is
t _ ’l“’r’/ r_’
A
T= (5)
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By convention within the transfer matrix formalism, the waves are normalized to unit probability, not to
unit flux as for the scattering matrix. Therefore the Transmission is in general given by
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where v and v are the velocities on the left and right side respectively.

e If one has a series of scatteres, how are the individual transfer matrices combined to give the transfer
matrix of the full system?

Consider a rectangular barrier
U a<z<b

v ={ | 4 7

and use the transfer matrix formalism to show that the transmission and reflection amplitudes for £ < U
are given by

B eik(b—a) . sinh[k(b — a)] e*(®—a) g
~ cosh[k(b— a)] + 45 sinh[k(b — a)] T cosh[k(b — a)] + i5 sinh[k(b — a)] ®)

with k = /2m(U — E)/k, ¢ = k/k — k/k and n = k/k + k/k. Herefore determine the transfer matrices
for the first potential step, the piece within the barrier and the second step and combine them.

e Now consider two barriers in series with transfer matrices 77 and 73 and transmission/reflection ampli-
tudes tl, r1, tQ and T9.
U1 0 S x S W1
U(ac): Uy Wi+d<z<W;+d+ Wy (9)
0 else



Note that the free space between the barriers also has a transfer matrix 7. Combine the transfer matrices
again to show that the total Transmission is given by
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(10)
(Hint: Use the relation (77/2)11 = (71/2)52-
Can you prove by it looking at the time reversed problem ¢ — 1*?)

(e) e Plot T for identical barriers (U; = Uz, W1 = Wh) for different parameter sets such that

d+ %(Wl +Wy) =50A
WU, = WalUs =9eV
Ui,Us; < 250 meV

0< F <250meV.

Compare with exercise 1.

(f) Use the method of finite differences and the Fisher-Lee relations to solve the double barrier problem
numerically:

- Show that the second derivative of the wavefunction has to be discretized as

$(@) = ¥li) = v
Y(a) = ¢ ) = LT ()

a2

with the lattice spacing a. This leads to the discrete Schrodinger equation H;jv; = Ev; with
Hij = (2t + ‘/;)(SU - t6i+1,j — t&i_l,j . (12)

t = h%/2ma? is the hopping parameter and V; = V (x;).
- In the lecture it was shown that the problem of inverting the full (infinite) matrix £ — H can be

avoided by using the finite sized Hamiltonian of the scattering region Hg and taking the leads into
account by adding the so-called self energy ©7/4 with

25' = 7(5ijt€ika [51j + 5Nj] (13)
and ZZ-A} = (Zﬁ-)* for identical leads in 1D. “1” and “N” are the first and the last point in the
scattering region respectively. The retarded/advanced Green function of the scattering region is then

h

-1
Git == (B—Hs —3R/4) (14)

Set up Hg and calculate Gg/ A numerically. You can use for example Matlab to invert the matrix.

- Relate the Green function to the transmission using the Fisher-Lee relation derived in class
T=Tr[lGITGy] T =ixf-x4. (15)

- Plot the result for different parameters and lattice spacings.

Frohes Schaffen!



