
Universität Regensburg Winter Semester 09/10

Mesoscopic Physics

Dr. Andrea Donarini Room 3.1.26
Jürgen Wurm Fridays at 10:15

Sheet 9

1. Combination of S-matrices and the double-δ potential

Consider a quasi-1D wire (only 1 propagating mode) with two identical scatterers scatterers at x = 0 and x = d
respectively. The scattering potential is approximated by

U(x) = U0 [δ(x) + δ(x − d)] . (1)

(a) Show that the transmission and reflection reflection probabilities are given by

T1 =
~

2v2

~2v2 + U2
0

R1 =
U2

0

~2v2 + U2
0

(2)

with the velocity v =
√

2E/m.
(Hint: Remember the special matching conditions for the wavefunctions at a δ−like potential from QM I.)

(b) Use the procedure of coherent S-matrix combination to show that the total transmission probability is
given by

T = T (E) =
T 2

1

1 − 2R1 cos(θ) +R2
1

(3)

with θ = 2
[

dmv/~ + tan−1(~v/U0)
]

and plot T (E) for U0 = 9 eV Å, d = 50 Å and 0 < E < 250 meV.

(c) • Resonant transmission: Although the individual transmission probability T1 is usually very small, T
can become large for certain resonant energies. What is the maximum value for T ? For strong scatterers
U0 ≫ ~v, calculate the positions of the resonances En.

please turn over
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2. Transfer matrix formalism and the double barrier potential

While the scattering matrix S connects incoming and outgoing waves, the transfer matrix T connects waves on
the left side and waves on the right side of a scatterer in a (quasi-)onedimensional problem.

In the schematic notation of the figure, the transfer matrix is defined as

(

out′

in′

)

= T

(

in

out

)

(4)

(a) • Show that for a scatterer with transmission and reflection amplitudes t and r for particles coming from
the left and t′ and r′ for particles coming from the right

the transfer matrix is

T =





t− rr′

t′
r′

t′

− r
t′

1
t′



 (5)

By convention within the transfer matrix formalism, the waves are normalized to unit probability, not to
unit flux as for the scattering matrix. Therefore the Transmission is in general given by

T =
v′

v
|t|2 =

v

v′
|t′|2 =

v

v′
1

|T22|2
, (6)

where v and v′ are the velocities on the left and right side respectively.

(b) • If one has a series of scatteres, how are the individual transfer matrices combined to give the transfer
matrix of the full system?

(c) Consider a rectangular barrier

U(x) =

{

U a ≤ x ≤ b
0 else

(7)

and use the transfer matrix formalism to show that the transmission and reflection amplitudes for E < U
are given by

t =
eik(b−a)

cosh[κ(b− a)] + i ε
2 sinh[κ(b− a)]

r = −i
η

2

sinh[κ(b− a)] eik(b−a)

cosh[κ(b− a)] + i ε
2 sinh[κ(b− a)]

(8)

with κ =
√

2m(U − E)/~, ε = κ/k − k/κ and η = κ/k + k/κ. Herefore determine the transfer matrices
for the first potential step, the piece within the barrier and the second step and combine them.

(d) • Now consider two barriers in series with transfer matrices T1 and T2 and transmission/reflection ampli-
tudes t1, r1, t2 and r2.

U(x) =







U1 0 ≤ x ≤W1

U2 W1 + d ≤ x ≤W1 + d+W2

0 else
(9)

2



Note that the free space between the barriers also has a transfer matrix Td. Combine the transfer matrices
again to show that the total Transmission is given by

T =

∣

∣

∣

∣

t1t2
1 − r1r2e2ikd

∣

∣

∣

∣

2

(10)

(Hint: Use the relation (T1/2)11 = (T1/2)
∗

22.
Can you prove by it looking at the time reversed problem ψ → ψ∗?)

(e) • Plot T for identical barriers (U1 = U2, W1 = W2) for different parameter sets such that

d+
1

2
(W1 +W2) = 50 Å

W1 U1 = W2 U2 = 9 eV

U1, U2 < 250 meV

0 < E < 250 meV .

Compare with exercise 1.

(f) Use the method of finite differences and the Fisher-Lee relations to solve the double barrier problem
numerically:

- Show that the second derivative of the wavefunction has to be discretized as

ψ(x) → ψ(xi) ≡ ψi

ψ′′(x) → ψ′′(xi) =
ψi+1 − 2ψi + ψi−1

a2
(11)

with the lattice spacing a. This leads to the discrete Schrödinger equation Hijψj = Eψi with

Hij = (2t+ Vi)δij − tδi+1,j − tδi−1,j . (12)

t = ~
2/2ma2 is the hopping parameter and Vi ≡ V (xi).

- In the lecture it was shown that the problem of inverting the full (infinite) matrix E − H can be
avoided by using the finite sized Hamiltonian of the scattering region HS and taking the leads into
account by adding the so-called self energy ΣR/A with

ΣR
ij = −δijte

ika [δ1j + δNj ] (13)

and ΣA
ij = (ΣA

ji)
∗ for identical leads in 1D. “1” and “N” are the first and the last point in the

scattering region respectively. The retarded/advanced Green function of the scattering region is then

G
R/A
S =

~

a

(

E −HS − ΣR/A
)

−1

. (14)

Set up HS and calculate G
R/A
S numerically. You can use for example Matlab to invert the matrix.

- Relate the Green function to the transmission using the Fisher-Lee relation derived in class

T = Tr
[

ΓGR
S ΓGA

S

]

Γ = i[ΣR − ΣA] . (15)

- Plot the result for different parameters and lattice spacings.

Frohes Schaffen!
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