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1. Resistivity dipoles in a mesoscopic conductor

• Consider a mesoscopic device with two leads, two contacts and a scatterer in the middle at x = 0, which
electrons can pass with an energy independent probability T . We set the chemical potential in the right contact
to zero and in the left contact to µ.

Assume a symmetric arrangement and sketch the profile of the average chemical potential. Now ignore the
contacts and approximate the chemical potential profile as

(a) µ̄(x) ≈
{

µ (1− T/2) x < 0
µT/2 x ≥ 0

(b) µ̄(x) ≈




µ (1− T/2) x < −L/2
µ [x (T − 1) /L + 1/2] −L/2 ≤ x ≤ L/2
µT/2 x > L/2

The electrostatic potential V will follow this profile, however it will be continuous. It is obtained via the
Poisson’s equation from the charge density n. In a very simple model we ignore the quantization in y-direction
and assume that n has a spacial dependence only in x-direction. Prove that under these conditions the Poisson’s
equation reads

∂2
x V (x) = −e n(x)

ε d
, (1)

where d is the extension of the potential well in the z direction. Since the density of states in a 2DEG is a
constant Ns = m/(π~2), n depends on the electrostatic potential in a simple way n(x) = eNs(µ̄(x) − V (x)).
Solve Eq. (1) to obtain both the electrostatic potential V (x) and the two dimensional charge distribution n(x).
In case (b), how does L influence the charge distribution?
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2. Landauer-Büttiker formalism for a three terminal device

Consider a scattering system with three leads that are connected to contacts.

(a) Use the Landauer Büttiker formula to set up a matrix equation that connects the currents to the voltages.
For convenience set V2 = 0 and remember that current conservation tells you I2 = −I1 − I3, so that it is
enough to consider (

I1

I3

)
= G

(
V1

V3

)

and solve this equation for V1 and V3 with given currents I1 and I3.

(b) From now on assume that contact 3 is used as a voltage probe (I3 = 0) and calculate the resistances R12,32

and R12,12. The multiterminal resistances are defined as

Rαβ,γδ =
Vγ − Vδ

Iα→β

Iα→ β is the current flowing from contact α to contact β. In other terms by fixing to zero the currents in
all contacts different from contact α or β. Is there anything in the resulting expressions that you would
not have expected naively?

(c) Use the Onsager relations for the conductance to show explicitly that the reciprocity relation R12,12(B) =
R12,12(−B) holds.

(d) In the coherent limit Gi3, G3i ¿ G12, G21 for i ∈ {1, 2}. What is R12,12 in this case? Calculate R12,12

also in the incoherent limit Gi3, G3i À G12, G21 for i ∈ {1, 2}. To which physical situations could the two
limits correspond?

(e) Consider a set up with the same number of modes in each lead and with reflectionless contacts:

G13 = G31 =
2e2

h
TN and G12 = G21 =

2e2

h
(1− T )N

and calculate R12,12. N is the number of modes in the leads and T ≤ 1. Calculate the invasiveness α of
the voltage probe

α =
Rp

Rc
,

where Rc = h
2e2

1
N is the contact resistance and Rp = R12,12 − Rc is the resistance that is due to the

voltage probe.

Hint: Use the sum rule
∑

i,i 6=j

Gij =
∑

i,i 6=j

Gji for fixed j.

Frohes Schaffen!
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