Mesoscopic Physics

Dr. Andrea Donarini
Room 5.01.01
Dr. Miriam del Valle
Wednesdays at 15:15
Jürgen Wurm

Sheet 6

1. Adiabatic quantum point contact

A quantum point contact as shown in the picture can be described by the two-dimensional Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \Delta \psi(x, y)=E \psi(x, y) \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\psi(x, \pm d(x))=0 \tag{2}
\end{equation*}
$$

(a) Expand the wavefunction $\psi(x, y)$ in terms of the local, transverse basis wavefunctions
$\phi_{n}(x, y)=\sqrt{\frac{1}{d(x)}} \sin \left(\frac{n \pi}{2 d(x)}(y+d(x))\right)$, which obviously fulfill the boundary condition (2).
Use the expansion

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}(x) \phi_{n}(x, y) \tag{3}
\end{equation*}
$$

and the Schrödinger equation (1) to derive a set of equations for the $c_{n}(x)$. Is the above expansion exact or an approximation?
(b) Show that in the adiabitic limit $d^{\prime}(x) / d(x), d^{\prime \prime}(x) / d(x) \ll 1$, there is no mixing between the different states n.
(Hint: Show that the terms that couple different c_{n} are proportional to $d^{\prime}(x) / d(x)$ and $d^{\prime \prime}(x) / d(x)$ respectively. You can use maple or mathematica to solve the integrals.)
Can you estimate the conductance of the quantum point contact?

2. Motion in wire with hard walls

(a) - Calculate the wavefunctions of the transverse modes and the corresponding energy spectrum of a lead with infinitely hard walls (infinitely high potential well). How does the hard wall confinement differ from the parabolic confinement discussed in class?
(b) - Classically the motion in such a wire would be zigzag like:

How can one describe this kind of orbits quantum mechanically? Construct a state whose expectation value of the position operator follows a zigzag like motion as in the picture.
(Hint: In transverse direction use two of the modes calculated in (a). In longitudinal direction, you can use e.g. a Gaussian wavepacket.)

3. Contact resistance for finite sized contacts

In the lecture the resistance of a ballistic conductor with two very large contacts was calculated under the assumption that in the contacts infinitely many transverse modes are occupied. The result was

$$
\begin{equation*}
R_{\mathrm{c}}=\frac{h}{2 e^{2}} M \tag{4}
\end{equation*}
$$

where M was the number of occupied transverse modes in the conductor.
Now calculate the resistance taking into account that in a real contact the number of occupied transverse modes is a (large but finite) number N. To allow for a nonzero current the electrochemical potential of left and rightgoing charge carries has to differ by a small amount $\delta \mu$. Further assume reflectionless contact as in the lecture.

Frohes Schaffen!

