Mesoscopic Physics

Dr. Andrea Donarini Dr. Miriam del Valle Room 5.01.01 Wednesdays at 15:15

Sheet 2

1. Naïve distribution function

Consider the trial distribution function given by $f(q,p) = \text{Tr} \{\hat{\rho} \, \delta \, (q - \hat{q}) \, \delta \, (p - \hat{p})\}$. Prove that this function is complex and thus represents a bad choice.

Hint: It is enough to provide a counter example. Consider for instance the pure state density operator defined by $\hat{\rho} = |\psi\rangle\langle\psi|$, built from a wave function such as $\psi(x) = \sqrt{\alpha/\pi}\sin(\frac{\alpha x}{\hbar})$, with x defined in the interval $[0, 2\pi\hbar/\alpha]$.

2. Wigner distribution

• The Wigner distribution function is defined as

$$f_{W}(q, p) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dy \left\langle q - \frac{y}{2} \middle| \hat{\rho} \middle| q + \frac{y}{2} \right\rangle e^{i\frac{py}{\hbar}}$$

Prove that it has the following properties:

- (i) It is real. That is, $\text{Im}(f_{W}) = \frac{1}{2}(f_{W} f_{W}^{*}) = 0$.
- (ii) $f_{\rm W}$ satisfies:

$$\int dp f_{W}(q, p) = \langle q | \hat{\rho} | q \rangle$$

$$\int dq f_{W}(q, p) = \langle p | \hat{\rho} | p \rangle$$

$$\int dq dp f_{W}(q, p) = \operatorname{Tr}(\hat{\rho}) = 1$$

Remember that $2\pi\delta(x) = \int_{-\infty}^{\infty} e^{i\kappa x} d\kappa$ and that $\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{ix \, p/\hbar}$.

(iii) $f_{\rm W}$ is Galilei invariant:

$$\psi(q) \to \psi(q+a) \implies f_{W}(q,p) \to f_{W}(q+a,p)$$

$$\psi(q) \to e^{ip'q/\hbar}\psi(q) \implies f_{W}(q,p) \to f_{W}(q,p-p')$$

Hint: For the density operator $\hat{\rho} = \sum_n p_n |\psi_n\rangle\langle\psi_n|$, we can rewrite the Wigner distribution function as

$$f_{\mathbf{W}}\left(q,p\right) = \frac{1}{2\pi\hbar} \sum_{n} p_{n} \int_{-\infty}^{\infty} \mathrm{d}y \, \psi_{n}\left(q - \frac{y}{2}\right) \, \psi_{n}^{*}\left(q + \frac{y}{2}\right) e^{\mathrm{i}\frac{py}{\hbar}}.$$

Calculate $\overline{f_{\mathrm{W}}}$ associated to $\overline{\psi_{n}}\left(q\right)=\psi_{n}\left(q+a\right)$ and $\overline{\psi_{n}}\left(q\right)=\mathrm{e}^{\mathrm{i}\frac{p'q}{\hbar}}\psi_{n}\left(q\right)$ respectively.

(iv) $f_{\rm W}$ is invariant under space and time reflections:

$$\psi(q) \to \psi(-q) \implies f_{W}(q, p) \to f_{W}(-q, -p)$$

$$\psi(q) \to \psi^{*}(q) \implies f_{W}(q, p) \to f_{W}(q, -p)$$

(v) In the force-free case the equation of motion is the classical one:

$$\frac{\partial f_{\mathbf{W}}}{\partial t} = -\frac{p}{m} \frac{\partial f_{\mathbf{W}}}{\partial q}$$

Consider that the time derivative of the density operator is given by $\dot{\hat{\rho}} = -\frac{\mathrm{i}}{\hbar} \left[\hat{H}, \hat{\rho} \right]$ and if no forces are present we can write the Hamiltonian as $\hat{H} = \hat{p}^2/2m$.

3. Weyl representation

Prove that the Weyl representation for $F = q^n p^m$ is

$$\hat{F}_{Weyl} = \frac{1}{2^n} \sum_{r=0}^{n} \binom{n}{r} \hat{q}^{n-r} \hat{p}^m \hat{q}^r$$

Hint: The associated operator for the classical quantity F is given by Weyl's expansion:

$$\hat{F}_{Weyl}\left(\hat{q},\hat{p}\right) = \int d\sigma d\tau \, e^{\frac{i}{\hbar}(\sigma\hat{q} + \tau\hat{p})} \varphi\left(\sigma,\tau\right)$$

where

$$\varphi\left(\sigma,\tau\right) = \frac{1}{(2\pi\hbar)^{2}} \int \mathrm{d}q \mathrm{d}p \, e^{\frac{\mathrm{i}}{\hbar}(\sigma q + \tau p)} q^{n} p^{m}$$

Frohes Schaffen!

.