Quantentheorie II

Blatt 11

1. Conserved quantities in the Dirac theory

- The Hamilton operator in the theory of Dirac is given by the expression $H=c \vec{\alpha} \cdot \vec{p}+\beta m c^{2}$ where β and α_{k} are the matrices

$$
\beta=\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & -\mathbb{I}
\end{array}\right), \quad \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
\sigma_{k} & 0
\end{array}\right)
$$

and σ_{k} are the Pauli matrices. Calculate the commutator of H with the operators

$$
p^{2}\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right), \quad \vec{p} \cdot\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right), \quad L^{2}\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right)
$$

where \mathbb{I} is the 2×2 identity matrix, $\vec{L}=\vec{r} \times \vec{p}$ is the vector of the angular momentum operator and $\vec{\sigma}$ is the vector of the Pauli matrices. Which of these operators is then a conserved quantity in the theory of Dirac?
(4 Points)

2. Time dependent perturbation theory

Consider a two level atom with the states $|1\rangle$ and $|2\rangle$ in presence of a time dependent perturbation. The Hamilton operator of the system can be written as:

$$
H(t)=E_{1}|1\rangle\langle 1|+E_{2}|2\rangle\langle 2|+V(t)(|1\rangle\langle 2|+|2\rangle\langle 1|)
$$

with $V(t)=V_{0} e^{-t^{2} / \tau^{2}} \cos \omega t$.
a) - Calculate with the help of the time dependent perturbation theory (for small V_{0}) the probability to find the system in the state $|2\rangle$ in the limit $t \rightarrow \infty$ knowing that at the beginning $(t \rightarrow-\infty)$ the system was in the state $|1\rangle$.
(2 Points)
b) Calculate the approximate transition probability in the case $\hbar \omega=E_{2}-E_{1}$ and $\hbar / \tau=$ $0.1\left(E_{2}-E_{1}\right)$?

3. Variational method

Consider two identical bosons of mass m confined to a one dimensional harmonic potential with frequency ω. The interaction between the bosons is of the form $U\left(x_{1}, x_{2}\right)=U_{0} \delta\left(x_{1}-x_{2}\right)$ with $U_{0}>0$.
a) - Show that a variational Ansatz for the ground state that associates to each the two bosons the wave function:

$$
\phi_{\lambda}(x)=\frac{1}{\sqrt{\sqrt{\pi} \lambda}} \exp \left(-\frac{x^{2}}{2 \lambda^{2}}\right)
$$

leads to an equation for the optimal parameter λ of the form

$$
\frac{\hbar^{2}}{m \lambda^{2}}-m \omega^{2} \lambda^{2}+\frac{U_{0}}{\sqrt{2 \pi} \lambda}=0
$$

b) Consider the limit of weak interaction $\frac{U_{0}}{x_{0} \hbar \omega} \ll 1$ and prove that in this limit the optimal lambda can be approximated with $\lambda \approx x_{0}\left[1+\frac{A}{4}+\mathcal{O}\left(A^{2}\right)\right]$ where $A=\frac{U_{0}}{\sqrt{2 \pi} x_{0} \hbar \omega}$ and $x_{0}=\sqrt{\frac{\hbar}{m \omega}}$.

Frohes Schaffen!

