Wintersemester 08-09

Quantentheorie II

Prof. Milena Grifoni

Dr. Andrea Donarini

Blatt 10

1. Interacting fermions and bosons

Consider a system of interacting particles confined into a one dimensional harmonic potential. Let the interaction be local in space. The first quantization Hamiltonian has the form:

$$H = -\sum_{i=1}^{N} \frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x_i^2} + \frac{1}{2}m\omega^2 x_i^2 + \frac{U}{2}\sum_{i\neq j}\delta(x_i - x_j)$$

 a) • Write the Hamiltonian in second quantization for a system of bosons of zero spin and of spin 1/2 fermions. In both cases use the position representation (field operators).

(2 Points)

b) • Calculate for the bosonic and fermionic case the ground state energy of the two particle system to first order in the perturbation theory. (2 Points)

2. Lorentz transformations

Consider an inertial frame K' moving with constant speed v_1 along the x direction of a reference frame K and another inertial frame K'' moving with speed v_2 along the y direction of the reference frame K'.

- a) Calculate the matrix of the Lorentz transformation that transform the space-time coordinates of an event in the K frame into the ones of the same event in the K'' frame. Calculate also the inverse transformation. (2 Points)
- b) Calculate the commutator between the single Lorentz transformations. *i.e.* The one between K and K' and the one between K' and K''.
- c) What happens to the commutator in the case $v_1, v_2 \ll c$?

3. Klein-Gordon equation with a Coulomb potential

In presence of an external electrostatic potential of the form

$$V(r) = -\frac{e^2}{r}$$

the Klein-Gordon equation reads

$$\left[\frac{1}{c^2}\left(i\hbar\frac{\partial}{\partial t}-V(r)\right)^2+\hbar^2\Delta-m^2c^2\right]\psi(\vec{r},t)=0.$$

a) Show that the stationary solutions of the Klein-Gordon equation have the form

$$\psi(\vec{r},t) = \frac{1}{r} \chi_{\ell}(r) Y_{\ell m}(\theta,\varphi) e^{-iEt/\hbar}$$

where $Y_{\ell m}(\theta, \varphi)$ are the spherical harmonics.

b) \bullet Prove that the radial function $\chi_\ell(r)$ solves the equation

$$\frac{d^2}{dr^2}\chi_{\ell}(r) + \left(\frac{[E - V(r)]^2 - E_0^2}{\hbar^2 c^2} - \frac{\lambda}{r^2}\right)\chi_{\ell}(r) = 0$$

and give the explicit form of the constants E_0 and λ .

(3 Points)

c) Calculate the discrete energy spectrum of the bound states. You can resort to the well known derivation of the energy spectrum of the non-relativistic hydrogen atom. Which eigenenergies do you obtain in the non relativistic limit? (3 Points)

Frohes Schaffen!

Return the solution of the exercises marked with \bullet by Thursday the 8th of January at 10:00.