Quantentheorie II

Blatt 7

1. Helium atom: Hartree Fock approach

The Hamiltonian for two electrons that move in the Coulomb potential generated by a nucleus of charge $Z=2$ is $H=H_{0}+H_{1}$ with

$$
H_{0}=-\frac{\hbar^{2}}{2 \mu}\left(\triangle_{1}+\triangle_{2}\right)-Z e^{2}\left(\frac{1}{\left|\overrightarrow{r_{1}}\right|}+\frac{1}{\left|\vec{r}_{2}\right|}\right)
$$

and

$$
H_{1}=\frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}
$$

The Hamiltonian H_{0} is the sum of two single particle contributions, one for each of the two electrons. The single particle Hamiltonian is diagonalized by the set of eigenfunctions

$$
\langle\sigma|\langle\vec{r}||n l m\rangle\left|m_{s}\right\rangle \equiv \psi_{n l m m_{s}}(r, \theta, \phi, \sigma)=R_{n l}(r) Y_{l}^{m}(\theta, \phi) \delta_{\sigma m_{s}},
$$

where $R_{n l}$ can be expressed in terms of Laguerre polinomials, Y_{l}^{m} are the spherical harmonics and $\delta_{\sigma m_{s}}$ is the Kronecker delta. Moreover (r, θ, ϕ) are the orbital coordinates in polar representation while $\sigma=\uparrow, \downarrow$ represents the spin coordinate of the electron. The associated single particle energy is $\varepsilon_{n l}$.
a) - Let us only consider now the orbitals $\psi_{100 m_{s}}$ and $\psi_{200 m_{s}}$. How many fermionic (antisymmetric) two electron states can you construct with them? Write explicitly the eigenstates and the associated eigenenergies for the the two electron Hamiltonian H_{0}. Express the energies in Rydberg. Hint: Remember that the wave functions should be antisymmetric with respect to the simultaneous exchange of the orbital and spin coordinates.
(2 Points)
b) - Classify all the states calculated in the previous point according to their energy, their total spin and the projection of the total spin along the z direction.
(3 Points)
Let us now consider the interaction between the two electrons at the Hartree-Fock (HF) level. We take as an Ansatz for the two single particle HF states

$$
\left|\varphi_{1}^{\mathrm{HF}}\right\rangle=a|100\rangle|\uparrow\rangle+b|100\rangle|\downarrow\rangle+c|200\rangle|\uparrow\rangle+d|200\rangle|\downarrow\rangle
$$

and

$$
\left|\varphi_{2}^{\mathrm{HF}}\right\rangle=e|100\rangle|\uparrow\rangle+f|100\rangle|\downarrow\rangle+g|200\rangle|\uparrow\rangle+h|200\rangle|\downarrow\rangle,
$$

where a, b, c, d, e, f, g, h are coefficients to be determined from the Hartree-Fock equations.
c) - Prove that the HF two particle state can be written in the form:

$$
\begin{aligned}
\left|\Psi^{\mathrm{HF}}\right\rangle= & (a f-b e)(|1 \uparrow\rangle|1 \downarrow\rangle-|1 \downarrow\rangle|1 \uparrow\rangle)+(a g-c e)(|1 \uparrow\rangle|2 \uparrow\rangle-|2 \uparrow\rangle|1 \uparrow\rangle)+ \\
& (a h-d e)(|1 \uparrow\rangle|2 \downarrow\rangle-|2 \downarrow\rangle|1 \uparrow\rangle)+(b g-c f)(|1 \downarrow\rangle|2 \uparrow\rangle-|2 \uparrow\rangle|1 \downarrow\rangle)+ \\
& (b h-d f)(|1 \downarrow\rangle|2 \downarrow\rangle-|2 \downarrow\rangle|1 \downarrow\rangle)+(c h-d g)(|2 \uparrow\rangle|2 \downarrow\rangle-|2 \downarrow\rangle|2 \uparrow\rangle),
\end{aligned}
$$

where we have used the short notation $\left|i m_{s}\right\rangle$ instead of $|i 00\rangle\left|m_{s}\right\rangle$. Write the square of the norm of the single particle HF states $\left|\varphi_{1}^{\mathrm{HF}}\right\rangle$ and $\left|\varphi_{1}^{\mathrm{HF}}\right\rangle$ in terms of the coefficients a, \ldots, h.
d) - Calculate the expectation value of the energy, i.e. of the total Hamiltonian H, on the HF state.
Hint: You may use the following relations:

$$
\begin{aligned}
& \left\langle 1 \sigma_{2}\right|\left\langle 1 \sigma_{1}\right| H_{1}\left|1 \sigma_{1}^{\prime}\right\rangle\left|1 \sigma_{2}^{\prime}\right\rangle=U_{11} \delta_{\sigma_{1} \sigma_{1}^{\prime}} \delta_{\sigma_{2} \sigma_{2}^{\prime}}, \\
& \left\langle 1 \sigma_{2}\right|\left\langle 2 \sigma_{1}\right| H_{1}\left|2 \sigma_{1}^{\prime}\right\rangle\left|1 \sigma_{2}^{\prime}\right\rangle=U_{12} \delta_{\sigma_{1} \sigma_{1}^{\prime}} \delta_{\sigma_{2} \sigma_{2}^{\prime}}, \\
& \left\langle 2 \sigma_{2}\right|\left\langle 2 \sigma_{1}\right| H_{1}\left|2 \sigma_{1}^{\prime}\right\rangle\left|2 \sigma_{2}^{\prime}\right\rangle=U_{22} \delta_{\sigma_{1} \sigma_{1}^{\prime}} \delta_{\sigma_{2} \sigma_{2}^{\prime}}, \\
& \left\langle 1 \sigma_{2}\right|\left\langle 2 \sigma_{1}\right| H_{1}\left|1 \sigma_{1}^{\prime}\right\rangle\left|2 \sigma_{2}^{\prime}\right\rangle=J \delta_{\sigma_{1} \sigma_{1}^{\prime}} \sigma_{\sigma_{2} \sigma_{2}^{\prime}} .
\end{aligned}
$$

e) Derive the HF equations for the coefficients a, \ldots, h by differentiation of the functional:

$$
\langle\tilde{H}\rangle=\left\langle\Psi^{\mathrm{HF}}\right| H\left|\Psi^{\mathrm{HF}}\right\rangle-\sum_{n=1}^{2} \varepsilon_{n}\left(\left|\left\langle\varphi_{n}^{\mathrm{HF}} \mid \varphi_{n}^{\mathrm{HF}}\right\rangle\right|^{2}-1\right)
$$

with respect of the coefficients a, \ldots, h.
f) Compare the equations obtained at point e) with those obtained by minimization of the functional $\langle\tilde{H}\rangle$ with respect to the functions $\left(\varphi_{i}^{\mathrm{HF}}\right)^{*}(\vec{r}, \sigma)(i=1,2)$:

$$
\begin{aligned}
& \left(-\frac{\hbar^{2}}{2 \mu} \triangle_{1}-\frac{Z e^{2}}{\left|\overrightarrow{r_{1}}\right|}\right) \varphi_{i}^{\mathrm{HF}}\left(\overrightarrow{r_{1}}, \sigma_{1}\right)+\sum_{\sigma_{2}} \int d \vec{r}_{2} \frac{e^{2}}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|} \\
& \times \sum_{j=1}^{2} \varphi_{j}^{\mathrm{HF} *}\left(\overrightarrow{r_{2}}, \sigma_{2}\right)\left[\varphi_{j}^{\mathrm{HF}}\left(\overrightarrow{r_{2}}, \sigma_{2}\right) \varphi_{i}^{\mathrm{HF}}\left(\vec{r}_{1}, \sigma_{1}\right)-\varphi_{j}^{\mathrm{HF}}\left(\overrightarrow{r_{1}}, \sigma_{1}\right) \varphi_{i}^{\mathrm{HF}}\left(\overrightarrow{r_{2}}, \sigma_{2}\right)\right]=\varepsilon_{i} \varphi_{i}^{\mathrm{HF}}\left(\overrightarrow{r_{1}}, \sigma_{1}\right)
\end{aligned}
$$

Hint: Notice that the two equations written here should be integrated (in space and spin) over the functions

$$
\psi_{100 \uparrow}^{*}\left(\vec{r}_{1}, \sigma_{1}\right), \psi_{100 \downarrow}^{*}\left(\vec{r}_{1}, \sigma_{1}\right), \psi_{200 \uparrow}^{*}\left(\vec{r}_{1}, \sigma_{1}\right), \psi_{200 \downarrow}^{*}\left(\vec{r}_{1}, \sigma_{1}\right),
$$

in order to derive the equations for the coefficients a, \ldots, h obtained at point e).

Frohes Schaffen!

