Quantentheorie II

Blatt 6

1. Classical vs. relativistic fermions

The density of states of a generic system of particles can be expressed as the sum over Dirac delta functions centered on the single particle eigenenergies, namely:

$$
\rho(E)=\sum_{\{\alpha\}} \delta\left(E-E_{\alpha}\right)
$$

where $\{\alpha\}$ represent a complete set of quantum numbers for the system.
a) - Calculate the density of states for a set of N fermions confined to a cubic region of volume V. How would the result change for a confinement to a segment of length L or a square of surface S ? Can you imagine a physical realization of such confinement to reduced dimensions for electrons? Hint: Perform all calculations of this exercise in the thermodynamic limit: i.e. $N \rightarrow \infty$ and V (or, correspondingly S or L) $\rightarrow \infty$ but maintaining a constant density.
(2 Points)
b) Repeat the calculation performed at point a) but this time consider a set of relativistic electrons whose kinetic energy is described by the equation

$$
E_{K}=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}}-m_{0} c^{2}
$$

c) - Calculate the Fermi energy for all the systems described at point a) and b). Hint: For what concerns the relativistic case remember that $E_{F} \ll m_{0} c^{2}$ or the system becomes unstable and the number of particles cannot be fixed.
(2 Points)

2. Helium atom

The Hamiltonian for two electrons that move in the Coulomb potential generated by a nucleus of charge Z is $H=H_{0}+H_{1}$ with

$$
H_{0}=-\frac{\hbar^{2}}{2 \mu}\left(\triangle_{1}+\triangle_{2}\right)-Z e^{2}\left(\frac{1}{\left|\vec{x}_{1}\right|}+\frac{1}{\left|\vec{x}_{2}\right|}\right)
$$

and

$$
H_{1}=\frac{e^{2}}{\left|\vec{x}_{1}-\vec{x}_{2}\right|}
$$

a) Calculate the ground state energy to first order in the perturbation theory assuming that the 0th order state is

$$
\psi_{0}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{Z^{3}}{\pi a_{0}^{3}} \exp \left[-\frac{Z\left(\left|\vec{x}_{1}\right|+\left|\vec{x}_{2}\right|\right)}{a_{0}}\right]
$$

Hint: You may use the expansion in multipoles:

$$
\frac{1}{\left|\vec{x}_{1}-\vec{x}_{2}\right|}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4 \pi}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{\ell m}\left(\theta_{2}, \phi_{2}\right),
$$

where $r_{<}=\min \left(\left|\vec{x}_{1}\right|,\left|\vec{x}_{2}\right|\right)$ and $r_{>}=\max \left(\left|\vec{x}_{1}\right|,\left|\vec{x}_{2}\right|\right)$ and $Y_{\ell m}(\theta, \phi)$ are the spherical harmonics.
b) Calculate the ground state energy also by minimizing the functional $E(\beta)=\left\langle\psi_{\beta}\right| H\left|\psi_{\beta}\right\rangle$ within the family of two electron functions

$$
\psi_{\beta}\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\beta^{3}}{\pi a_{0}^{3}} \exp \left[-\frac{\beta\left(\left|\vec{x}_{1}\right|+\left|\vec{x}_{2}\right|\right)}{a_{0}}\right] .
$$

Compare the two results for different values of $Z(Z=1, \ldots, 6)$.

3. Electrons in a parabolic potential

Consider a system of non-interacting electrons vertically confined to a plane and under the influence of the two-dimensional parabolic potential $V(x, y)=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)$
a) - Calculate, for the case $N \gg 1$ the dependence of the total energy on the total number of electrons N.
(2 Points)
b) - Calculate the five lowest "magic numbers" for the harmonic oscillator, i.e. the particle numbers N_{1}, N_{2}, \ldots at which, in the ground state, one single particle energy level of the harmonic oscillator is completely full and the next empty. Hint: Notice that the single particle energy levels can be orbitally degenerate.
(2 Points)
c) - Write explicitly the wave function corresponding to the ground states for two and three particles.
(2 Points)

Frohes Schaffen!

Return the solution of the exercises marked with • by Monday 24th of November at 10:00.

