Wintersemester 08-09

Quantentheorie II

Prof. Milena Grifoni

Dr. Andrea Donarini

Blatt 4

1. Spontaneous decay in a hydrogen atom

• The rate of spontaneous decay of the state $|\psi_i\rangle$ into the state $|\psi_f\rangle$ is given by the formula

$$\Gamma_{if} = \frac{\alpha \omega_{if}^3}{2\pi c^2} \int \mathrm{d}\Omega_k \sum_{j=1}^2 |\langle \psi_f | \, \vec{e}_j(\vec{k}) \cdot \vec{r} \, |\psi_i \rangle|^2 \,,$$

where α is the fine structure constant, c is the speed of light and ω the transition frequency from $|\psi_i\rangle$ to $|\psi_f\rangle$. $\vec{e_1}(\vec{k})$ and $\vec{e_2}(\vec{k})$ are the unitary vectors pointing in the two different polarization direction of a photon of wavevector \vec{k} . The integral must be performed over the complete solid angle Ω_k of \vec{k} . Calculate the decay rate of the first excited p-state (n = 2, l = 1, m = 0) into the ground state of hydrogen. (3 Points)

2. Selection rules

• Consider the matrix elements

$$egin{aligned} &\langle n'l'm_l'm_s' | \left(3z^2 - r^2
ight) |nlm_lm_s
angle \,, \ &\langle n'l'm_l'm_s' | xy |nlm_lm_s
angle \end{aligned}$$

of a one-electron atom. Write, with the help of the composition properties and orthogonality of the spherical harmonics, the selection rules for Δl and Δm_l . Why is $\Delta m_s = 0$ in both cases? (2 Points)

3. Coherent states of a harmonic oscillator

There is a simple correspondence between coherent states and complex numbers: to every complex number α one can associate the coherent state:

$$|\alpha\rangle = D(\alpha) |0\rangle$$

where $|0\rangle$ is the ground state of the harmonic oscillator and $D(\alpha) = \exp(\alpha a^{\dagger} - \alpha^* a)$, a^{\dagger} and a being the creation and annihilation operators defined by the relations:

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger})$$
 and $\hat{p} = i\sqrt{\frac{\hbar m\omega}{2}}(a^{\dagger}-a)$.

a) • Prove that each coherent state is a superposition of all eigenstates of the harmonic oscillator by demonstrating that

$$\langle n|\alpha\rangle = \mathrm{e}^{-\frac{|\alpha|^2}{2}} \frac{\alpha^n}{\sqrt{n!}}$$

where $|n\rangle$ is the *n*-th eigenstate of the harmonic oscillator. *Hint*: You can use the Glauber formula

$$\mathbf{e}^{A+B} = \mathbf{e}^A \mathbf{e}^B \mathbf{e}^{-\frac{1}{2}[A,B]}$$

valid for two operators A and B which commute with their commutator. (2 Points)

b) Show with the help of point a) that:

$$|\alpha\rangle = \exp\left(-i\frac{p_{\alpha}x_{\alpha}}{2\hbar}\right)\exp\left(i\frac{p_{\alpha}\hat{x}}{\hbar}\right)\exp\left(-i\frac{x_{\alpha}\hat{p}}{\hbar}\right)|0\rangle$$

with $x_{\alpha} := \sqrt{\frac{2\hbar}{m\omega}} \operatorname{Re}(\alpha)$ and $p_{\alpha} := \sqrt{2\hbar m\omega} \operatorname{Im}(\alpha)$. Write explicitly the wave function $\psi_{\alpha}(x) \equiv \langle x | \alpha \rangle$ and sketch the probability density $|\psi_{\alpha}(x)|^2$ of the coherent state corresponding to $\alpha = x_0 \in \mathbb{R}$.

- c) Assume to have prepared a harmonic oscillator at time t = 0 in a coherent state $|\alpha_0\rangle$. Prove that at time t it will be evolved into the state $\exp(-i\omega t/2) |\alpha_0 e^{-i\omega t}\rangle$ (3 Points)
- d) At time t = 0 the state of the harmonic oscillator is described by the superposition of 2 coherent states

$$|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}(|x_0\rangle + |-x_0\rangle)$$

with $x_0 \in \mathbb{R}$. Calculate the evolution of the state at every time and sketch $|\psi(x,t)|^2$ for $\omega t = 0, \pi/2$ and π .

Frohes Schaffen!

Return the solution of the exercises marked with • by Monday 10th of November at 10:00.