Quantentheorie II

Prof. Milena Grifoni

Dr. Andrea Donarini

Blatt 2

1. WKB method

Let us consider the one dimensional Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x)
$$

with a potential $V(x)$ that has only one local minimum with respect to x. We indicate with a and b the turning points of the classical trajectory at energy E. They are defined by the relation $V(a)=V(b)=E$. According to the semiclassical WKB-Ansatz, the eigenfunction $\psi(x)$ of energy E is, in the classically allowed region $a<x<b$, the linear combination of the functions:

$$
\phi_{ \pm}(x)=\frac{1}{\sqrt{p(x)}} \exp \left[\pm \frac{i}{\hbar} \int_{x_{0}}^{x} p\left(x^{\prime}\right) d x^{\prime}\right], \quad \text { with } \quad p(x)=\sqrt{2 m[E-V(x)]}
$$

where $x_{0} \in[a, b]$. The condition that $\psi(x)$ does not diverge in the forbidden regions implies

$$
\begin{align*}
\psi(x) & =\frac{2}{\sqrt{p(x)}} \cos \left[\frac{1}{\hbar} \int_{a}^{x} p\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right], \quad \text { as well as } \tag{1}\\
\psi(x) & =\frac{2 C}{\sqrt{p(x)}} \cos \left[\frac{1}{\hbar} \int_{x}^{b} p\left(x^{\prime}\right) d x^{\prime}-\frac{\pi}{4}\right] \tag{2}
\end{align*}
$$

where C is in general a complex amplitude.
a) Show that equations (1) and (2) are satisfied only if

$$
\int_{a}^{b} \sqrt{2 m[E-V(x)]} d x=\pi \hbar(n+1 / 2)
$$

with $n \in \mathbb{N}_{0}$ holds and correspondingly $C=(-1)^{n}$.
b) - In a potential with a hard (left) wall in $x=0, a=0$ for all energies and the condition (1) is substituted by the boundary condition $\psi(0)=0$. Prove that, in this case, the relation

$$
\int_{0}^{b} \sqrt{2 m[E-V(x)]} d x=\pi \hbar(n+3 / 4)
$$

holds, with $n \in \mathbb{N}_{0}$.
(3 Points)
c) - Calculate with this formula the semiclassical eigenenergies for the potential

$$
V(x)=\left\{\begin{array}{c}
\infty \quad: x<0 \\
\alpha x^{2}: x \geq 0
\end{array},\right.
$$

with $\alpha>0$. Prove that for $\alpha=\frac{m \omega^{2}}{2}$ you find a spacing between the energy levels of $2 \hbar \omega$. Can you explain the result using the symmetry of the eigenstates of the harmonic oscillator?
(3 Points)

2. Baker-Hausdorff equation

The exponential of a linear operator A is defined by the relation:

$$
\mathrm{e}^{A}=\sum_{m=0}^{\infty} \frac{A^{m}}{m!}
$$

a) - Prove the so called Baker-Campbell-Hausdorff formula for two operators A, B

$$
\mathrm{e}^{A} B \mathrm{e}^{-A}=\sum_{m=0}^{\infty} \frac{1}{m!}[A, B]_{m},
$$

where $[A, B]_{m}=\left[A,[A, B]_{m-1}\right]$ and $[A, B]_{0}=B$.
Hint: Construct the Taylor expansion of the auxiliary function $f(s) \equiv \mathrm{e}^{s A} B \mathrm{e}^{-s A}(s \in \mathbb{R})$ centered in $s=0$. For this purpose you will need the derivative of the exponential of an operator: $(\mathrm{d} / \mathrm{d} s) \mathrm{e}^{ \pm s A}= \pm A \mathrm{e}^{ \pm s A}$. Eventually, evaluate the expansion in the point $s=1 \mathrm{in}$ order to obtain $\mathrm{e}^{A} B \mathrm{e}^{-A}$.
b) Show that, in the case $[A,[A, B]]=[B,[B, A]]=0$ the following formula holds:

$$
\mathrm{e}^{A} \mathrm{e}^{B}=\mathrm{e}^{B} \mathrm{e}^{A} \mathrm{e}^{[A, B]} .
$$

This formula is also called Baker-Hausdorff formula and is useful for the calculation with creator and annihilator operators.

Frohes Schaffen!

